Citation: YU Wenting, ZHANG Hui, SUN Yuzhen, WU Hao, LUO Mingbiao. Efficient Removal of Arsenic by Metal Organic Framework UTSA-74 from Aqueous Solutions[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 205-210. doi: 10.11944/j.issn.1000-0518.2020.02.190196 shu

Efficient Removal of Arsenic by Metal Organic Framework UTSA-74 from Aqueous Solutions

  • Corresponding author: LUO Mingbiao, luomingbiao_ecut@126.com
  • Received Date: 15 July 2019
    Revised Date: 9 September 2019
    Accepted Date: 12 October 2019

    Fund Project: the National Natural Science Foundation of China 21761001Supported by the National Natural Science Foundation of China(No.21761001)

Figures(3)

  • Metal organic framework UTSA-74 synthesized via hydrothermal method could efficiently remove both arsenate and arsenite from water. A batch test with aqueous solutions was performed, and 95% of As(Ⅴ) and 85% of As(Ⅲ) removal was obtained with the lower concentration of arsenic(~1 mg/L). This experiment data matched the pseudo-second-order model and Freundlich model. In addition, when Cl-, NO3- and PO43- all existed in solutions, PO43- affected the adsorption of arsenic obviously. After adsorption, we eluted UTSA-74@arsenic by 0.1 mol/L NaOH, the removal rate of arsenic was still up to around 70% after three cycles. XRD, SEM and IR analyses showed that the excellent adsorption capacity was due to the reformed Zn—O—As bond between arsenic and adsorbent. In a word, UTSA-74 can be the candidate for removing arsenic.
  • 加载中
    1. [1]

      Du Q, Peng J, Wu P. Metal-Organic Framework Based Crystalline Sponge Method for Structure Analysis[J]. TrAC-Trends Anal Chem, 2018,102:290-310. doi: 10.1016/j.trac.2018.02.014

    2. [2]

      Moe B, Peng H Y, Lu X F. Comparative Cytotoxicity of Fourteen Trivalent and Pentavalent Arsenic Species Determined Using Real-Time Cell Sensing[J]. J Environ Sci, 2016,49:113-124. doi: 10.1016/j.jes.2016.10.004

    3. [3]

      Liu Q Q, Peng H Y, Lu X F. Arsenic Species in Chicken Breast:Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations[J]. Environ Health Persp, 2016,124(8):1174-1181. doi: 10.1289/ehp.1510530

    4. [4]

      Carlin D J, Naujokas M F, Bradham K D. Arsenic and Environmental Health:State of the Science and Future Research Opportunities[J]. Environ Health Persp, 2015,124(7):890-899.  

    5. [5]

      MA Xiaoliang, LI Jie, LI Fengting. Study of Using Metal-Organic Framework for Adsorption Removal of Trace Arsenate in Drinking Water[J]. Chinese J Green Sci Technol, 2018(2):25-27.  

    6. [6]

      Li Z Q, Yang J C, Sui K W. Facile Synthesis of Metal-Organic Framework MOF-808 for Arsenic Removal[J]. Mater Lett, 2015,160:412-414. doi: 10.1016/j.matlet.2015.08.004

    7. [7]

      GONG Wenpeng, CHEN Dan, YANG Shuijin. Adsorption of Methyl Violet by an Anionic Metal-Organic Framework Cu(BDC-NH2)(4, 4'-Bipy)0.5(BDC=Terephthalicacid, Bipy=Bipyridine)[J]. Chinese J Appl Chem, 2017,34(11):1321-1328. doi: 10.11944/j.issn.1000-0518.2017.11.170015 

    8. [8]

      Yuan Y, Yang Y J, Ma X J. Molecularly Imprinted Porous Aromatic Frameworks and Their Composite Components for Selective Extraction of Uranium Ions[J]. Adv Mater, 2018,30(12)1706507. doi: 10.1002/adma.201706507

    9. [9]

      Gao Q, Xu J, Bu X H. Recent Advances about Metal-Organic Frameworks in the Removal of Pollutants from Wastewater[J]. Coordin Chem Rev, 2019,378:17-31. doi: 10.1016/j.ccr.2018.03.015

    10. [10]

      YUAN Beibei, ZHOU Beibei, ZHANG Yuebiao. Charge-Switchable Metal-Organic Framework for Size/Charge-Selective Molecular Inclusions[J]. Chinese J Inorg Chem, 2018,33(3):352-356.  

    11. [11]

      XIE Danyan, XING Huabin, ZHANG Zhiguo. Porous Hydrogen-Bonded Organometallic Fameworks for Adsorption Separation of Acetylene and Carbon Dioxide[J]. Chinese J Chem Eng, 2017,68(1):165-173.  

    12. [12]

      TIAN Ming. Rational Construction of Functional Metal-Organic Frameworks(MOFs) and Their Applications in Adsorption[D]. Hengyang: University of South China, 2018(in Chinese). 

    13. [13]

      Forse A C, Gonzalez M I, Siegelman R L. Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal-Organic Framework Zn2(dobpdc)[J]. J Am Chem Soc, 2018,140(5):1663-1673. doi: 10.1021/jacs.7b09453

    14. [14]

      Kumar P, Pournar A, Kim K H. Metal-Organic Frameworks:Challenges and Opportunities for Ion-Exchange/Sorption Applications[J]. Prog Mater Sci, 2017,86:25-74. doi: 10.1016/j.pmatsci.2017.01.002

    15. [15]

      TANG Jiayi, LUO Jiasi, LU Shuai. The Applications of MOFs on Adsorption[J]. Chinese Polym Bull, 2017(8):86-95.  

    16. [16]

      Luo M B, Xiong Y Y, Wu H Q. The MOF+ Technique:A Significant Synergic Effect Enables High Performance Chromate Removal[J]. Angew Chem Int Ed, 2017,56(51):16376-16379. doi: 10.1002/anie.201709197

    17. [17]

      Xiong Y Y, Li J Q, Gong L L. Using MOF-74 for Hg2+ Removal from Ultra-Low Concentration Aqueous Solution[J]. J Solid State Chem, 2017,246:16-22. doi: 10.1016/j.jssc.2016.10.018

    18. [18]

      Bueken B, Reinsch H, Heidenreich N. An in Situ Investigation of the Water-Induced Phase Transformation of UTSA-74 to MOF-74(Zn)[J]. CrystEngComm, 2017,19(29):4152-4156. doi: 10.1039/C7CE00094D

    19. [19]

      Luo F, Yan C S, Dang L L. UTSA-74:A MOF-74 Isomer with Two Accessible Binding Sites Per Metal Center for Highly Selective Gas Separation[J]. J Am Chem Soc, 2016,138(17):5678-5684. doi: 10.1021/jacs.6b02030

    20. [20]

      Lu P, hu C. Arsenic Eh-pH Diagrams at 25 C and 1 Bar[J]. Environ Earth Sci, 2011,62(8):1673-1683. doi: 10.1007/s12665-010-0652-x

    21. [21]

      Yu W T, Luo M B, Yang Y X. Metal-Organic Framework(MOF) Showing Both Ultrahigh As(Ⅴ) and As(Ⅲ) Removal from Aqueous Solution[J]. J Solid State Chem, 2019,269:264-270. doi: 10.1016/j.jssc.2018.09.042

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    4. [4]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    8. [8]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(336)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return