Citation: HUANG Xuewen, XU Sheng, ZHAO Wei, WEI Wei, LI Xiaojie, LIU Xiaoya. Hydrogen Peroxide Sensor Based on a Polymeric Self-assembled Nanoparticles-Modified Screen-Printed Electrode[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 235-241. doi: 10.11944/j.issn.1000-0518.2020.02.190190 shu

Hydrogen Peroxide Sensor Based on a Polymeric Self-assembled Nanoparticles-Modified Screen-Printed Electrode

  • Corresponding author: LIU Xiaoya, lxy@jiangnan.edu.cn
  • Received Date: 8 July 2019
    Revised Date: 16 August 2019
    Accepted Date: 9 September 2019

    Fund Project: the National Natural Science Foundation of China 51803079Supported by the National Natural Science Foundation of China(No.51803079, No.51573073)the National Natural Science Foundation of China 51573073

Figures(6)

  • We report on a facile and efficient construction of electrochemical biosensors by modifying the screen printed carbon electrodes (SPCE) with multifunctional polymeric nanoparticles. An amphiphilic random copolymer, poly(St-co-AA-co-VCz-co-DMAEMA) (PSACD), was first synthesized using styrene (St), acrylic acid (AA), N-vinylcarbazole (VCz) and dimethylaminoethyl methacrylate (DMAEMA) as hydrophobic, hydrophilic, electroactive and enzymatic compatible monomers, respectively. The polymeric nanoparticles (PSACD NPs) were then prepared through self-assembly of polymers in a selective solvent mixture of DMF/H2O. The obtained PSACD NPs were characterized by particle size analyzer and scanning electron microscope (SEM), and were used to fabricate the hydrogen peroxide (H2O2) biosensor with the functions of improving the specific surface areas, providing a suitable microenvironment for keeping the enzyme activity, and accelerating the electron transfer between enzymes and the electrodes. Specifically, the SPCE was successively modified by PSACD NPs suspensions, horseradish peroxidase (HRP) solution and perfluorosulfonic acid-PTFE copolymer (Nafion) solution. The properties of the proposed electrochemical biosensor were studied via an amperometric detection method. The results show that the biosensor has a short response time (less than 2 s) and a linear increasing response current with the concentration of H2O2 increasing from 0.02 to 7.48 mmol/L. The biosensor also has nice stability, good selectivity and excellent anti-interference performance.
  • 加载中
    1. [1]

      HUANG Qilin. Study on Novel Enzyme Biosensors Based on Functionalized Nanomaterials and Their Applications[D]. Shanghai: East China Normal University, 2013(in Chinese).

    2. [2]

      Chaiyo S, Mehmeti E, Žagar K. Electrochemical Sensors for the Simultaneous Determination of Zinc, Cadmium and Lead Using A Nafion/Ionic Liquid/Graphene Composite Modified Screen-Printed Carbon Electrode[J]. Anal Chim Acta, 2016,918:26-34. doi: 10.1016/j.aca.2016.03.026

    3. [3]

      Rungsawang T, Punrat E, Adkins J. Development of Electrochemical Paper-Based Glucose Sensor Using Cellulose-4-Aminophenylboronic Acid-Modified Screen-Printed Carbon Electrode[J]. Electroanalysis, 2016,28(3):462-468. doi: 10.1002/elan.201500406

    4. [4]

      Hu X, Goud K Y, Kumar V S. Disposable Electrochemical Aptasensor Based on Carbon Nanotubes-V2O5-Chitosan Nanocomposite for Detection of Ciprofloxacin[J]. Sens Actuators B, 2018,268:278-286. doi: 10.1016/j.snb.2018.03.155

    5. [5]

      Su W, Wang S, Cheng S. H. Electrochemically Pretreated Screen-Printed Carbon Electrodes for the Simultaneous Determination of Aminophenol Isomers[J]. J Electroanal Chem, 2011,651(2):166-172.  

    6. [6]

      SUN Jianjun, WEI Hang, LIN Zhibin, et al. Pretreatment Method of Screen-Printed Carbon Electrodes: CN, 101235502[P]. 2008-08-06(in Chinese).

    7. [7]

      González-Sánchez M, Gómez-Monedero B, Agrisuelas J. Highly Activated Screen-Printed Carbon Electrodes by Electrochemical Treatment with Hydrogen Peroxide[J]. Electrochem Commun, 2018,91:36-40. doi: 10.1016/j.elecom.2018.05.002

    8. [8]

      YANG Shaoming, CHEN Yansheng, LI Ruiqin. One-step Preparation of Horseradish Peroxidase Biosensor via Electrodeposition[J]. Chinese J Appl Chem, 2015,32(7):849-854.  

    9. [9]

      Li Z, Sheng L, Meng A. A Glassy Carbon Electrode Modified with a Composite Consisting of Reduced Graphene Oxide, Zinc Oxide and Silver Nanoparticles in a Chitosan Matrix for Studying the Direct Electron Transfer of Glucose Oxidase and for Enzymatic Sensing of Glucose[J]. Microchim Acta, 2016,183(5):1625-1632. doi: 10.1007/s00604-016-1791-x

    10. [10]

      Lee S W, Lee K Y, Song Y W. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform[J]. Adv Mater, 2016,28(8):1577-1584. doi: 10.1002/adma.201503930

    11. [11]

      Kanso H, García M B G, Llano L F. Novel Thin Layer Flow-Cell Screen-Printed Graphene Electrode for Enzymatic Sensors[J]. Biosens Bioelectron, 2017,93:298-304. doi: 10.1016/j.bios.2016.08.069

    12. [12]

      Arduini F, Forchielli M, Amine A. Screen-Printed Biosensor Modified with Carbon Black Nanoparticles for the Determination of Paraoxon Based on the Inhibition of Butyrylcholinesterase[J]. Microchim Acta, 2015,182(3/4):643-651.  

    13. [13]

      Hernández-Ibáñez N, García-Cruz L, Montiel V. Electrochemical Lactate Biosensor Based upon Chitosan/Carbon Nanotubes Modified Screen-Printed Graphite Electrodes for the Determination of Lactate in Embryonic Cell Cultures[J]. Biosens Bioelectron, 2016,77:1168-1174. doi: 10.1016/j.bios.2015.11.005

    14. [14]

      KULISONG Hayierbieke, ZENG Han. Direct Electrochemical Behavior and Sensing Performance of Nitrogen Doped Meso Porous Carbon and Chitosan Composite Immobilized with Laccase Modified Electrode[J]. Chinese J Appl Chem, 2013,30(10):1194-1201.  

    15. [15]

      Arduini F, Micheli L, Moscone D. Electrochemical Biosensors Based on Nanomodified Screen-Printed Electrodes:Recent Applications in Clinical Analysis[J]. TrAC Trends Anal Chem, 2016,79:114-126. doi: 10.1016/j.trac.2016.01.032

    16. [16]

      Nieto-Suárez M, López-Quintela M A, Lazzari M. Preparation and Characterization of Crosslinked Chitosan/Gelatin Scaffolds by Ice Segregation Induced Self-assembly[J]. Carbohydr Polym, 2016,141:175-183. doi: 10.1016/j.carbpol.2015.12.064

    17. [17]

      Harrison A, Vuong T T, Zeevi M P. Rapid Self-Assembly of Metal/Polymer Nanocomposite Particles as Nanoreactors and Their Kinetic Characterization[J]. Nanomaterials, 2019,9(3)318. doi: 10.3390/nano9030318

    18. [18]

      Seo E, Lee T, Lee K T. Versatile Double Hydrophilic Block Copolymer:Dual Role as Synthetic Nanoreactor and Ionic and Electronic Conduction Layer for Ruthenium Oxide Nanoparticle Supercapacitors[J]. J Mater Chem, 2012,22(23):11598-11604. doi: 10.1039/c2jm30738c

    19. [19]

      Heidari A, Younesi H, Mehraban Z. Selective Adsorption of Pb(Ⅱ), Cd(Ⅱ), and Ni(Ⅱ) Ions from Aqueous Solution Using Chitosan-MAA Nanoparticles[J]. Int J Biol Macromol, 2013,61:251-263. doi: 10.1016/j.ijbiomac.2013.06.032

    20. [20]

      Zhang S, Shao Y, Yin G. Self-assembly of Pt Nanoparticles on Highly Graphitized Carbon Nanotubes as an Excellent Oxygen-Reduction Catalyst[J]. Appl Catal B, 2011,102(3/4):372-377.  

    21. [21]

      Amalvy J I, Armes S P, Binks B P. Use of Sterically-Stabilised Polystyrene Latex Particles as a pH-Responsive Particulate Emulsifier to Prepare Surfactant-Free Oil-in-Water Emulsions[J]. Chem Commun, 2003(15):1826-1827. doi: 10.1039/b304967a

    22. [22]

      Yuan W, Zhang J, Zou H. Synthesis, Crystalline Morphologies, Self-assembly, and Properties of H-Shaped Amphiphilic Dually Responsive Terpolymers[J]. Polym Sci Part A:Polym Chem, 2012,50(13):2541-2552. doi: 10.1002/pola.26032

    23. [23]

      Huang S, Jiang S. Structures and Morphologies of Biocompatible and Biodegradable Block Copolymers[J]. RSC Adv, 2014,4(47):24566-24583. doi: 10.1039/C4RA03043E

    24. [24]

      YANG Lin. Study on Synthesis and Properties of Star Homo- and Block Copolymers of 4-Arm Dimethylaminoethyl Methacrylate[D]. Xi'an: Shaanxi Normal University, 2007(in Chinese). 

    25. [25]

      Prasad K S, Muthuraman G, Zen J M. The Role of Oxygen Functionalities and Edge Plane Sites on Screen-Printed Carbon Electrodes for Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid[J]. Electrochem Commun, 2008,10(4):559-563. doi: 10.1016/j.elecom.2008.01.033

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    14. [14]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(1)
  • Abstract views(282)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return