Citation: YAN Pinping, LUO Fubin, HUANG Baoquan, XIAO Liren, QIAN Qingrong, LI Hongzhou, CHEN Qinghua. Properties of Thermal Conductivity Enhanced Polyethylene Glycol-Based Phase Change Composites[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 46-53. doi: 10.11944/j.issn.1000-0518.2020.01.190209 shu

Properties of Thermal Conductivity Enhanced Polyethylene Glycol-Based Phase Change Composites

  • Corresponding author: LI Hongzhou, lihongzhou@fjnu.edu.cn CHEN Qinghua, cqhuar@126.com
  • Received Date: 24 July 2019
    Revised Date: 27 August 2019
    Accepted Date: 10 October 2019

    Fund Project: the National Natural Science Foundation of China 51903049the Foundation of Quangang Petrochemical Research Institute, Fujian Normal University No2018YJY03Supported by the National Natural Science Foundation of China(No.51903049), and the Foundation of Quangang Petrochemical Research Institute, Fujian Normal University(No2018YJY03)

Figures(6)

  • In this study, thermally conductive phase change composites materials was prepared based on polyethylene glycol (PEG) and inorganic fillers via the molten blending method. The microstructure, thermal conductivity and phase transition performance of the prepared composites were investigated by scanning electronic microscopy (SEM), thermal constant analyzer, differential scanning calorimetry (DSC), infrared thermal imaging and thermogravimetric analysis. The results show that, compared with calcium carbonate and alumina, boron nitride can more significantly improve the thermal conductivity of PEG at the same mass fraction. When the mass fraction of BN is 40%, the thermal conductivity of composites can reach 3.40 W/(m·K). Simultaneously, flake boron nitride can effectively limit the leakage of PEG and maintain the initially shapes well upon long time heating, and maintain the shape stability of the composite.
  • 加载中
    1. [1]

      GAO Maotiao, WANG Chunxu, WU Xuehong. Preparation of Nanographene Sheet-Paraffin Composite Phase Change Cold Storage Material and Its Thermal Properties[J]. Food Mach, 2016,32(12):128-132.

    2. [2]

      JIA Shikui, WANG Zhong, CHEN Ligui. Development and Thermal Properties of Highly Shaped Polyethylene Glycol/Sisal Cellulose/Expanded Graphite Phase Change Energy Storage Materials[J]. Polym Mater Sci Eng, 2017,33(1):137-141.

    3. [3]

      CHEN Xi, ZHENG Nan, LIU Lingzhi. Preparation and Properties of Long-Chain Alkanoic Acid Grafted Hydroxypropyl Cellulose Phase Change Materials[J]. Chinese J Appl Chem, 2015,32(5):535-541.  

    4. [4]

      Wu B, Jiang Y Y, Wang Y J. Study on a PEG/Epoxy Shape-Stabilized Phase Change Material:Preparation, Thermal Properties and Thermal Storage Performance[J]. Int J Heat Mass Transfer, 2018,126:1134-1142. doi: 10.1016/j.ijheatmasstransfer.2018.05.153

    5. [5]

      WANG Siyu, GUO Yanfeng, YU Lianghan. Experimental Study on Cold Storage Performance of PEG/EG Composite Phase Change Energy Storage Materials[J]. China Plast, 2018,32(4).  

    6. [6]

      JIA Shikui, ZHANG Xianyong, FU Lei. Crystallization and Thermal Properties of GNPs/PEG Shaped Phase Change Energy Storage Materials[J]. J Shaanxi Univ Technol(Nat Sci), 2017,33(1):1-5.

    7. [7]

      Lin Y X, Jia Y T, Alva G. Review on Thermal Conductivity Enhancement, Thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage[J]. Renew Sust Energ Rev, 2018,82:2730-2742. doi: 10.1016/j.rser.2017.10.002

    8. [8]

      Ibrahim N I, l-Sulaiman F A, Rahman S. Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications:A Critical Review[J]. Renew Sust Energ Rev, 2017,74:26-50. doi: 10.1016/j.rser.2017.01.169

    9. [9]

      Zhang L, Zhou K C, Wei Q P. Thermal Conductivity Enhancement of Phase Change Materials with 3D Porous Diamond Foam for Thermal Energy Storage[J]. Appl Energy, 2019,233:208-219.  

    10. [10]

      Deng Y, Li J H, Qian T T. Thermal Conductivity Enhancement of Polyethylene Glycol/Expanded Vermiculite Shape-Stabilized Composite Phase Change Materials with Silver Nanowire for Thermal Energy Storage[J]. Chem Eng J, 2016,295:427-435. doi: 10.1016/j.cej.2016.03.068

    11. [11]

      SHI You, YANG Bin, LU Huayang. Dynamic Rheological Behavior of Graphene Nanosheet Filled HDPE/PEG Phase Change Composites[J]. Polym Mater Sci Eng, 2017,10:58-62.

    12. [12]

      Zhang X G, Qiao J X, Zhang W Y. Thermal Behavior of Composite Phase Change Materials Based on Polyethylene Glycol and Expanded Vermiculite with Modified Porous Carbon Layer[J]. J Mater Sci, 2018,53(18):13067-13080. doi: 10.1007/s10853-018-2531-x

    13. [13]

      LIU Jie, LIU Zhiming. Preparation and Characterization of Polyethylene Glycol/Cellulose Phase Change Materials[J]. Biomass Chem Eng, 2018,52(4):1-6.

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    3. [3]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(20)
  • Abstract views(2091)
  • HTML views(665)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return