Citation: LIU Meng, WU Zhijie, PAN Tao. Recent Advance in the Characterization of Acidic Properties of Zeolites[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 1-15. doi: 10.11944/j.issn.1000-0518.2020.01.190199 shu

Recent Advance in the Characterization of Acidic Properties of Zeolites

  • Corresponding author: WU Zhijie, zhijiewu@cup.edu.cn
  • Co-first author
  • Received Date: 17 July 2019
    Revised Date: 10 September 2019
    Accepted Date: 14 October 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.U1662131)the National Natural Science Foundation of China U1662131

Figures(8)

  • The catalytic performance of zeolite is mainly dependent on its acidic properties. The accurately and quantitatively distinguishing acid type, density, strength and site distribution of acid is significant to clarify the catalytic performance of zeolites. Here, we summarize the recent advances in the qualitative and quantitative analytic methods for acid site distribution, acid type and acid strengths.
  • 加载中
    1. [1]

      XU Ruren, PANG Wenqin, HUO Qisheng, et al. Molecular Sieves and Porous Materials Chemistry[M]. Beijing:Science Press, 2015(in Chinese).

    2. [2]

      WU Zhijie. Principle of Energy Conversion Catalysis[M]. China University of Petroleum Press, 2018(in Chinese).

    3. [3]

      XIANG Shouhe, WAGNG Jingzhong, GAO Feng. Study on L Acid of Hβ Zeolite[J]. Chinese J Catal, 1991,12(5):406-408.  

    4. [4]

      TANG Yi, HUA Weiming, GAO Zi. Framework Structure and Acid Strength of Zeolite[J]. Acta Phys-Chim Sin, 1994,10(12):1116-1120. doi: 10.3866/PKU.WHXB19941212

    5. [5]

      Wu Y, Emdadi L, Qin D. Quantification of External Surface and Pore Mouth Acid Sites in Unit-Cell Thick Pillared MFI and Pillared MWW Zeolites[J]. Micropor Mesopor Mater, 2017,241:43-51. doi: 10.1016/j.micromeso.2016.12.004

    6. [6]

      Lad J B, Makkawi Y T. Adsorption of Dimethyl Ether(DME) on Zeolite Molecular Sieves[J]. Chem Eng J, 2014,256:335-346. doi: 10.1016/j.cej.2014.07.001

    7. [7]

      Ordomsky V V, Murzin V Y, Monakhova Y V. Nature, Strength and Accessibility of Acid Sites in Micro/Mesoporous Catalysts Obtained by Recrystallization of Zeolite BEA[J]. Micropor Mesopor Mater, 2007,105(1/2):101-110.  

    8. [8]

      Corma A, Fornes V, Forni L. 2, 6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites[J]. J Catal, 1998,179(2):451-458. doi: 10.1006/jcat.1998.2233

    9. [9]

      Emdadi L, Oh S C, Wu Y. The Role of External Acidity of Meso-/Microporous Zeolites in Determining Selectivity for Acid-Catalyzed Reactions of Benzyl Alcohol[J]. J Catal, 2016,335:165-174. doi: 10.1016/j.jcat.2015.12.021

    10. [10]

      Hu B, Gay I D. Probing Surface Acidity by 31P Nuclear Magnetic Resonance Spectroscopy of Arylphosphines[J]. Langmuir, 1999,15(2):477-481. doi: 10.1021/la980750a

    11. [11]

      Emdadi L, Wu Y, Zhu G. Dual Template Synthesis of Meso-and Microporous MFI Zeolite Nanosheet Assemblies with Tailored Activity in Catalytic Reactions[J]. Chem Mater, 2012,26(3):1345-1355.  

    12. [12]

      Liu D, Zhang X, Bhan A. Activity and Selectivity Differences of External Br nsted Acid Sites of Single-Unit-Cell Thick and Conventional MFI and MWW Zeolites[J]. Micropor Mesopor Mater, 2014,200:287-290. doi: 10.1016/j.micromeso.2014.06.029

    13. [13]

      Chal R, Gerardin C, Bulut M. Overview and Industrial Assessment of Synthesis Strategies Towards Zeolites with Mesopores[J]. ChemCatChem, 2011,3(1):67-81. doi: 10.1002/cctc.201000158

    14. [14]

      Wu Y, Emdadi L, Wang Z. Textural and Catalytic Properties of Mo Loaded Hierarchical Meso-Microporous Lamellar MFI and MWW Zeolites for Direct Methane Conversion[J]. Appl Catal A, 2014,470:344-354. doi: 10.1016/j.apcata.2013.10.053

    15. [15]

      Wu Y, Emdadi L, Oh S C. Spatial Distribution and Catalytic Performance of Metal-Acid Sites in Mo/MFI Catalysts with Tunable Meso-Microporous Lamellar Zeolite Structures[J]. J Catal, 2015,323:100-111. doi: 10.1016/j.jcat.2014.12.022

    16. [16]

      Wu Y, Emdadi L, Schulman E. Overgrowth of Lamellar Silicalite-1 on MFI and BEA Zeolites and Its Consequences on Non-oxidative Methane Aromatization Reaction[J]. Micropor Mesopor Mater, 2017,263:1-10.  

    17. [17]

      Wu Z J, Zhao K Q, Zhang Y. Synthesis and Consequence of Aggregated Nanosized ZSM-5 Zeolite Crystals for Methanol to Propylene Reaction[J]. Ind Eng Chem Res, 2019,58(25):10737-10749. doi: 10.1021/acs.iecr.9b00502

    18. [18]

      LIU Wenhuan, GUO Peng, SU Ji. Acid Characterization and Acid Catalytic Performance of Titanium Silicate Molecular Sieve TS-1[J]. Chinese J Catal, 2009,30(6):482-484. doi: 10.3321/j.issn:0253-9837.2009.06.002

    19. [19]

      Niwa M, Katada N. New Method for the Temperature-Programmed Desorption(TPD) of Ammonia Experiment for Characterization of Zeolite Acidity:A Review[J]. Chem Rec, 2014,45(6):432-455.  

    20. [20]

      Bagnasco G. Improving the Selectivity of NH3-TPD Measurements[J]. J Catal, 1996,159(1):249-252. doi: 10.1006/jcat.1996.0085

    21. [21]

      Hu S, Shang J, Zhang Q. Selective Formation of Propylene from Methanol over High-Silica Nanosheets of MFI Zeolite[J]. Appl Catal A, 2012,445/446:215-220. doi: 10.1016/j.apcata.2012.08.032

    22. [22]

      Li W, Ma T, Zhang Y F. Facile Control of Inter-crystalline Porosity in the Synthesis of Size-Controlled Mesoporous MFI Zeolites via in-Situ Converting Silica Gel into Zeolite Nanocrystals for Catalytic Cracking[J]. CrystEngComm, 2015,17:5680-5689. doi: 10.1039/C5CE00637F

    23. [23]

      HU Si, ZHANG Qing, YIN Qi. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys-Chim Sin, 2015,31(7):1374-1382.  

    24. [24]

      Zhang J L, Cao P, Yan H Y. Synthesis of Hierarchical Zeolite Beta with Low Organic Template Content via the Steam-Assisted Conversion Method[J]. Chem Eng J, 2016,291:82-93. doi: 10.1016/j.cej.2016.01.088

    25. [25]

      Wu Z J, Zhao K Q, Ge S H. Selective Conversion of Glycerol into Propylene:Single-Step versus Tandem Process[J]. ACS Sustainable Chem Eng, 2016,4(8):4192-4207. doi: 10.1021/acssuschemeng.6b00676

    26. [26]

      Emdadi L, Tran D T, Wu Y. BEA Nanosponge/Ultra-thin Lamellar MFI Prepared in One-Step:Integration of 3D and 2D Zeolites into a Composite for Efficient Alkylation Reactions[J]. Appl Catal A, 2017,530:56-65. doi: 10.1016/j.apcata.2016.11.011

    27. [27]

      REN Fenfen. Pore Structure, Acidity and Benzylation of Naphthalene over Mesopores Beta Zeolite[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese). 

    28. [28]

      XUE Bing, WU Hao, Wen Linzhi. Alkylation of Toluene to p-Xylene Catalyzed by Boric Acid Modified MCM-22 Zeolite[J]. Chem Ind Eng Prog, 2017,36(6):2177-2182.  

    29. [29]

      Kester P M, Miller J T, Gounder R. Ammonia Titration Methods to Quantify Brønsted Acid Sites in Zeolites Substituted with Aluminum and Boron Heteroatoms[J]. Ind Eng Chem Res, 2018,57(19):1081-1096.  

    30. [30]

      Yuta N, Takumi K, Ken-Ichi S. Micropore Diffusivities of NO and NH3 in Cu-ZSM-5 and Their Effect on NH3-SCR[J]. Catal Today, 2019,332:64-68. doi: 10.1016/j.cattod.2018.06.056

    31. [31]

      Luo J Y, Gao F, Kamasamudram K. New Insights into Cu/SSZ-13 SCR Catalyst Acidity[J]. J Catal, 2017,348:291-299. doi: 10.1016/j.jcat.2017.02.025

    32. [32]

      Lin C, Janssens T V W, Skoglundh M. Interpretation of NH3-TPD Profiles from Cu-CHA Using First-Principles Calculations[J]. Top Catal, 2019,62:93-99. doi: 10.1007/s11244-018-1095-y

    33. [33]

      Wakabayashi F, Kondo J, Wada A. FT-IR Studies of the Interaction Between Zeolitic Hydroxyl Groups and Small Molecules.1.Adsorption of Nitrogen on H-Mordenite at Low Temperature[J]. J Phys Chem, 1993,94(47):10761-10768.  

    34. [34]

      Katada N. Analysis and Interpretation of Acidic Nature of Aluminosilicates[J]. Mol Catal, 2018,458:116-126. doi: 10.1016/j.mcat.2017.12.024

    35. [35]

      HU Si, ZHANG Qing, GONG Yanjun. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys-Chim Sin, 2016,32(7):1785-1794.  

    36. [36]

      Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J Catal, 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145

    37. [37]

      Wu Y, Zheng L, Emdadi L. Tuning External Surface of Unit-Cell Thick Pillared MFI and MWW Zeolites by Atomic Layer Deposition and Its Consequences on Acid-Catalyzed Reactions[J]. J Catal, 2016,337:177-187. doi: 10.1016/j.jcat.2016.01.031

    38. [38]

      BI Yunfei, XIA Guofu, HUANG Weiguo. Study on Catalysts for Hydroisomerization-Effect of Acidic Properties[J]. Acta Petrol Sin(Petrol Process Sect), 2017,33(5):873-979. doi: 10.3969/j.issn.1001-8719.2017.05.008

    39. [39]

      Baertsch C D, Komala K T, Chua Y H. Genesis of Brønsted Acid Sites During Dehydration of 2-Butanol on Tungsten Oxide Catalysts[J]. J Catal, 2002,205(1):44-57. doi: 10.1006/jcat.2001.3426

    40. [40]

      Macht J, Baertsch C D, May-Lozano M. Support Effects on Brønsted Acid Site Densities and Alcohol Dehydration Turnover Rates on Tungsten Oxide Domains[J]. J Catal, 2004,227(2):479-491. doi: 10.1016/j.jcat.2004.08.014

    41. [41]

      Liu H, Iglesia E. Effects of Support on Bifunctional Methanol Oxidation Pathways Catalyzed by Polyoxometallate Keggin Clusters[J]. J Catal, 2003,223(1):161-169.  

    42. [42]

      Santiesteban J G, Vartuli J C, Han S. Influence of the Preparative Method on the Activity of Highly Acidic WOx/ZrO2 and the Relative Acid Activity Compared with Zeolites[J]. J Catal, 1997,168(2):431-441. doi: 10.1006/jcat.1997.1658

    43. [43]

      Knö zinger H. Infrared Spectroscopy as a Probe of Surface Acidity[M]. Elementary Reaction Steps in Heterogeneous Catal. Springer Netherlands, 1993, 398: 267-285.

    44. [44]

      GoraMarek K, Tarach K, Choi M. 2, 6-Di-Tert-Butylpyridine Sorption Approach to Quantify the External Acidity in Hierarchical Zeolites[J]. J Phys Chem C, 2014,118(23):12266-12274. doi: 10.1021/jp501928k

    45. [45]

      WANG Bin. The Acidity of Zeolites Tested by the Basic Probe Molecular with Adsorption Infrared Spectroscopy[C]. Beijing Institute of Chemical Technology Youth Scientific and Technological Papers Conference. Beijing, 2008(in Chinese).

    46. [46]

      Barzetti T, Selli E, Moscotti D. Pyridine and Ammonia as Probes for FTIR Analysis of Solid Acid Catalysts[J]. J Chem Soc, Faraday Trans, 1996,92(8):1401-1407. doi: 10.1039/ft9969201401

    47. [47]

      Bhan A, Allian A D, Sunley G J. Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls[J]. J Am Chem Soc, 2007,129(16):4919-4924. doi: 10.1021/ja070094d

    48. [48]

      Bhan A, Iglesia E. A Link Between Reactivity and Local Structure in Acid Catalysis on Zeolites[J]. Acc Chem Res, 2008,41(4):559-567. doi: 10.1021/ar700181t

    49. [49]

      Gabrienko A A, Danilova I G. Direct Measurement of Zeolite Bronsted Acidity by FTIR Spectroscopy: Solid-State 1H MAS NMR Approach for Reliable Determination of the Integrated Molar Absorption Coefficients[J]. J Phys Chem C, 2018,122:25386-25395. doi: 10.1021/acs.jpcc.8b07429

    50. [50]

      Huang J, Jiang Y, Marthala V R R. Concentration and Acid Strength of Hydroxyl Groups in Zeolites La, Na-X and La, Na-Y with Different Lanthanum Exchange Degrees Studied by Solid-State NMR Spectroscopy[J]. Micropor Mesopor Mater, 2007,104(1):129-136.  

    51. [51]

      Yin F, Blumenfeld A L, Gruver V. NH3 as a Probe Molecule for NMR and IR Study of Zeolite Catalyst Acidity[J]. J Phys Chem B, 1997,101(10):1824-1830. doi: 10.1021/jp9618542

    52. [52]

      Zhao R, Zhao Z, Li S. Insights into the Correlation of Aluminum Distribution and Bronsted Acidity in H-Beta Zeolites from Solid-State NMR Spectroscopy and DFT Calculations[J]. J Phys Chem Lett, 2017,8(10):2323-2327. doi: 10.1021/acs.jpclett.7b00711

    53. [53]

      GAO Xiuzhi, ZHANG Yu, WANG Xiumei. Solid State NMR Study on Acidic Central Structure and Acidity ofDealuminized HY Zeolite[J]. Acta Petrol Sin(Petrol Process Sect), 2012,28(2):180-187.  

    54. [54]

      Holland G P, Cherry B R, Alam T M. 15N Solid-State NMR Characterization of Ammonia Adsorption Environments in 3A Zeolite Molecular Sieves[J]. J Phys Chem B, 2004,108(42):16420-16426. doi: 10.1021/jp047884j

    55. [55]

      Holland G P, Alam T M. Location and Orientation of Adsorbed Molecules in Zeolites from Solid-State REAPDOR NMR[J]. Phys Chem Chem Phys, 2005,7(8):1739-1742. doi: 10.1039/b418943d

    56. [56]

      Chu Y Y, Yu Z W, Zheng A M. Acidic Strengths of Bronsted and Lewis Acid Sites in Solid Acids Scaled by 31P NMR Chemical Shifts of Adsorbed Trimethylphosphine[J]. J Phys Chem C, 2011,115(15):7660-7667. doi: 10.1021/jp200811b

    57. [57]

      Karra M D, Sutovich K J, Mueller K T. NMR Characterization of Bronsted Acid Sites in Faujasitic Zeolites with Use of Perdeuterated Trimethylphosphine Oxide[J]. J Am Chem Soc, 2002,124(6):902-903. doi: 10.1021/ja017172w

    58. [58]

      Zhao Q, Chen W H, Huang S J. Discernment and Quantification of Internal and External Acid Sites on Zeolites[J]. J Phys Chem B, 2002,106(17):4462-4469. doi: 10.1021/jp015574k

    59. [59]

      Zheng A, Zhang H, Lu X. Theoretical Predictions of 31P NMR Chemical Shift Threshold of Trimethylphosphine Oxide Absorbed on Solid Acid Catalysts[J]. J Phys Chem B, 2008,112(15):4496-4505. doi: 10.1021/jp709739v

    60. [60]

      YU Shanqing, TIAN Huiping. Acidity characterization of Rare-Earth-Exchanged Y Zeolite Using 31P MAS NMR[J]. Chinese J Catal, 2014,35(8):1318-1328.  

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(192)
  • Abstract views(3912)
  • HTML views(1905)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return