Citation: LIU Minghui, LIU Yingcen, LÜ Rongwen. Preparation of Carbon-Supported Highly Dispersed Palladium Nanoparticles and Their Performance for Suzuki Reaction[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 61-68. doi: 10.11944/j.issn.1000-0518.2020.01.190161 shu

Preparation of Carbon-Supported Highly Dispersed Palladium Nanoparticles and Their Performance for Suzuki Reaction

  • Corresponding author: LÜ Rongwen, lurw@dlut.edu.cn
  • Received Date: 31 May 2019
    Revised Date: 18 July 2019
    Accepted Date: 3 September 2019

    Fund Project: the Joint Funds of the National Natural Science Foundation of China U1608223the National Natural Science Foundation of China 21576039the National Natural Science Foundation of China 21576044the Science Fund for Creative Research Groups of the National Natural Science Foundation of China 21421005Supported by the Joint Funds of the National Natural Science Foundation of China(No.U1608223), the National Natural Science Foundation of China(No.21576044, No.21536002, No.21576039), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No.21421005)the National Natural Science Foundation of China 21536002

Figures(8)

  • Firstly, Pd2+ ions are anchored on melamine-formaldehyde prepolymer by the coordination with N atoms on the prepolymer. Then the colloidal nanospheres grow on silica hydrogel via the simultaneous condensation reaction accelerated by 2, 4-diaminobenzenesulfonic acid. Finally, the carbon-supported highly dispersed palladiumPd@C catalyst is obtained after calcination in an atmosphere of 5%(molar fraction) H2 and 95%(molar fraction) N2 gases, followed by being treated with 5% HF solution. The prepared highly dispersed Pd nanoparticles with a loading amount of 1.37%(mass fraction) have an average diameter of (2.4±0.87) nm, and the catalytic performance of Pd@C has been further evaluated by Suzuki reaction. With the addition of molar ratio 1:100 catalyst, Pd@C performs both good catalytic activity with a yield of 99.3% achieved within 5 minutes, and excellent durability after 8 cycles.
  • 加载中
    1. [1]

      Tsuji J. Palladium Reagents and Catalysts[M]. New Perspectives for the 21st Century; Wiley: West Sussex, U.K., 2004.

    2. [2]

      Malleron J L, Fiaud J C, Legros J Y, Handbook of Palladium-catalyzed Organic Reactions[M]. Academic Press:London, 2000.

    3. [3]

      Burda C, Chen X B, Narayanan R. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem Rev, 2005,105(4):1025-1102.

    4. [4]

      Yuan B Z, Pan Y Y, Li Y W. A Highly Active Heterogeneous Palladium Catalyst for the Suzuki Miyaur and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Angew Chem Int Ed, 2010,49(24):4054-4058. doi: 10.1002/anie.201000576

    5. [5]

      Reetz M T, Westermann E. Phosphane-free Palladium-Catalyzed Coupling Reactions:The Decisive Role of Pd Nanoparticles[J]. Angew Chem Int Ed, 2000,39(1):165-168. doi: 10.1002/(SICI)1521-3773(20000103)39:1<165::AID-ANIE165>3.0.CO;2-B

    6. [6]

      Jadhav S N, Kumbhar A S, Rodeb C V. Ligand-free Pd Catalyzed Cross-coupling Reactions in an Aqueous Hydrotropic Medium[J]. Green Chem, 2016,18(7):1898-1911. doi: 10.1039/C5GC02314A

    7. [7]

      Wan X K, Guan Z J, Wang Q M. Homoleptic Alkynyl-Protected Gold Nanoclusters:Au44(PhC/C)28 and Au36(PhC/C)24[J]. Angew Chem Int Ed, 2017,56(38):11494-11497. doi: 10.1002/anie.201706021

    8. [8]

      Mitsudome T, Yamamoto M, Maeno Z. One-Step Synthesis of Core-Gold/Shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes[J]. J Am Chem Soc, 2015,137(42):13452-13455. doi: 10.1021/jacs.5b07521

    9. [9]

      Wang T, Yuan X, Li S R. CeO2-Modified Au@SBA-15 Nanocatalysts for Liquid-Phase Selective Oxidation of Benzyl Alcohol[J]. Nanoscale, 2015,7(7):7593-7602.  

    10. [10]

      Lin X J, Zhong A Z, Sun Y B. In Situ Encapsulation of Pd Inside the MCM-41 Channel[J]. Chem Commun, 2015,51(35):7482-7485. doi: 10.1039/C5CC00300H

    11. [11]

      Zhong A Z, Zou W, Mao W X. A Continuous Etching Process for Highly-active Pd Nanoclusters and Their in Situ Stabilization[J]. RSC Adv, 2014,4(45):23637-23641. doi: 10.1039/c4ra02047b

    12. [12]

      Li C L, Zhang Q H, Wang Y. Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Encapsulated in SBA-15[J]. Catal Lett, 2008,120(1/2):126-136.  

    13. [13]

      Cargnello M, Delgado Jaen J J, Hernandez Garrido J C. Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3[J]. Science, 2012,337(6095):713-717. doi: 10.1126/science.1222887

    14. [14]

      Jin Z, Xiao M D, Bao Z H. A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles[J]. Angew Chem Int Ed, 2012,51(26):6406-6410. doi: 10.1002/anie.201106948

    15. [15]

      Liu R, Priestley R D. Rational Design and Fabrication of Core shell Nanoparticles Through a One-Step/Pot Strategy[J]. J Mater Chem A, 2016,4(18):6680-6692. doi: 10.1039/C5TA09607C

    16. [16]

      Zhu C Z, Li H, Fu S F. Highly Efficient Nonprecious Metal Catalysts Towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures[J]. Chem Soc Rev, 2016,45(3):517-531.  

    17. [17]

      White R J, Luque R, Budarin V L. Supported Metal Nanoparticles on Porous Materials, Methods and Applications[J]. Chem Soc Rev, 2009,38(2):481-494.  

    18. [18]

      Haruta M, Tsubota S, Kobayashi T. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4[J]. J Catal, 1993,144(1):175-192.

    19. [19]

      Jeong U, Joo J B, Kim Y. Au Nanoparticle-Embedded SiO2-Au@SiO2 Catalysts with Improved Catalytic Activity, Enhanced Stability to Metal Sintering and Excellent Recyclability[J]. RSC Adv, 2015,5(69):55608-55618. doi: 10.1039/C5RA07175E

    20. [20]

      Haas K L, Franz K J. Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology[J]. Chem Rev, 2009,109(10):4921-4960. doi: 10.1021/cr900134a

    21. [21]

      Yang J, Sargent E H, Kelley S O. A General Phase-Transfer Protocol for Metal Ions and Its Application in Nanocrystal Synthesis[J]. Nat Mater, 2009,8:683-689. doi: 10.1038/nmat2490

    22. [22]

      Ogasawara S, Kato S. Palladium Nanoparticles Captured in Microporous Polymers:A Tailor-Made Catalyst for Heterogeneous Carbon Cross-Coupling Reactions[J]. J Am Chem Soc, 2010,132(13):4608-4613. doi: 10.1021/ja9062053

    23. [23]

      Liu M H, Liu Y C, Gao Z M. Nitrogen and Sulfur Co-Doped Carbon Nanospheres for Highly Efficient Oxidation of Ethylbenzene[J]. New J Chem, 2018,42(19):15962-15967. doi: 10.1039/C8NJ02948B

    24. [24]

      Wu Y S, Li Y, Qin L. Monodispersed or Narrow-Dispersed Melamine Formaldehyde Resin Polymer Colloidal Spheres:Preparation, Size-Control, Modification, Bioconjugation and Particle Formation Mechanism[J]. J Mater Chem B, 2013,1(2):204-212. doi: 10.1039/C2TB00043A

    25. [25]

      Zhang H W, Noonan O, Huang X D. Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes[J]. ACS Nano, 2016,10(4):4579-4586. doi: 10.1021/acsnano.6b00723

    26. [26]

      Wang G, Sun Y H, Li D B. Controlled Synthesis of N-Doped Carbon Nanospheres with Tailored Mesopores Through Self-assembly of Colloidal Silica[J]. Angew Chem Int Ed, 2015,54(50):15191-15196. doi: 10.1002/anie.201507735

    27. [27]

      Kim S Y, Suh W H, Choi J H. Template-Free Synthesis of High Surface Area Nitrogen-Rich Carbon Microporous Spheres and Their Hydrogen Uptake Capacity[J]. J Mater Chem A, 2014,2(7):2227-2232. doi: 10.1039/C3TA14030J

    28. [28]

      Zhang D L, Zhaorigetu B, Bao Y S. Supported Palladium Nanoparticles Catalyzed Ortho-directed C-C Coupling Reaction via a Pd0/PdII/PdIV Catalytic Cycle[J]. J Phys Chem C, 2015,119(35):20426-20432. doi: 10.1021/acs.jpcc.5b04735

    29. [29]

      Budarin V L, Clark J H, Luque R. Palladium Nanoparticles on Polysaccharide-Derived Mesoporous Materials and Their Catalytic Performance in C-C Coupling Reactions[J]. Green Chem, 2008,10(4):382-387. doi: 10.1039/B715508E

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    19. [19]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(1)
  • Abstract views(965)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return