Citation: XIA Ying, XIA Jing, CUI Hongyan, QIAN Ming, ZHANG Liuwei, CHEN Qixian, WANG Jingyun. Homologous Cell Membrane Coated Smart Drug-Release Nanoparticles for Targeted Hepatocellular Carcinoma Therapy[J]. Chinese Journal of Applied Chemistry, ;2020, 37(1): 69-79. doi: 10.11944/j.issn.1000-0518.2020.01.190121 shu

Homologous Cell Membrane Coated Smart Drug-Release Nanoparticles for Targeted Hepatocellular Carcinoma Therapy

  • Corresponding author: WANG Jingyun, wangjingyun67@dlut.edu.cn; wangjingyun67@dlut.edu.cn
  • Received Date: 22 April 2019
    Revised Date: 21 May 2019
    Accepted Date: 3 July 2019

    Fund Project: the National Natural Science Foundation of China 21878041Supported by the National Natural Science Foundation of China(No.21878041)

Figures(8)

  • Nanoparticle drug delivery system has played an important role in enhancing the efficacy of traditional chemotherapy drugs in recent years. However, the main challenges faced by conventional nanoparticle include poor biocompatibility, low specific targeting and slow drug release in target sites. In this work, we fabricated an efficient hepatocellular carcinoma-targeting liposome system functionalized with a redox-cleavable and homologous cell membrane(M)-targeting. The blank (P-ss-G/D@M) and drug-loaded (P-ss-G/D/Sf@M) nanoparticles coated with cell membrane were prepared by thin-film hydration method combined with electrostatic adsorption and membrane extrusion. The drug-loading amount of sorafenib was 7.2%, and the encapsulation efficiency was 79.9%. The results of in vitro drug release showed that P-ss-G/D/Sf@M accelerated drug release under reducing conditions, and the drug release rate was more than 65% at 48 hours, which was 25% higher than that under non-reducing conditions. In vitro study demonstrated that nanoparticles coated with hepatoma cell membrane were more easily taken into hepatoma cells, showing the targeting of hepatocellular carcinoma. At the same time, the disulfide bonds in the nanoparticles broke and drugs were rapidly released under the high concentration of glutathione (GSH) in the tumor cells. Compared with non-reducing sensitive drug-loaded nanoparticles, P-ss-G/D/Sf@M could significantly inhibit the growth of hepatoma cells (Hep-G2) and increase the apoptosis rate of hepatoma cells. Therefore, the homologous cell membrane-coated smart drug delivery carrier prepared herein is likely to be used to treat hepatocellular carcinoma in future.
  • 加载中
    1. [1]

      Nakano M, Tanaka M, Kuromatsu R. Sorafenib for the Treatment of Advanced Hepatocellular Carcinoma with Extrahepatic Metastasis:A Prospective Multicenter Cohort Study[J]. Cancer Med-US, 2015,4(12):1836-1843. doi: 10.1002/cam4.548

    2. [2]

      Tom G, Philip S, Isaac R. Preparation of an Efficient and Safe Polymeric-Magnetic Nanoparticle Delivery System for Sorafenib in Hepatocellular Carcinoma[J]. Life Sci, 2018,206:10-21. doi: 10.1016/j.lfs.2018.04.046

    3. [3]

      Kalyane D, Raval N, Maheshwari R. Employment of Enhanced Permeability and Retention Effect(EPR):Nanoparticle-Based Precision Tools for Targeting of Therapeutic and Diagnostic Agent in Cancer[J]. Mater Sci Eng C, 2019,98:1252-1276. doi: 10.1016/j.msec.2019.01.066

    4. [4]

      Chao L, Yu C, Yi X. Nanoparticle-Mediated Internal Radioisotope Therapy to Locally Increase the Tumor Vasculature Permeability for Synergistically Improved Cancer Therapies[J]. Biomaterials, 2019,197:368-379. doi: 10.1016/j.biomaterials.2019.01.033

    5. [5]

      HAN Xu, DING Guanyu, DONG Qing. Research Progress of Nano-Gene Carriers Based on Liposomes[J]. Chinese J Appl Chem, 2018,35(7):735-744.  

    6. [6]

      Sawant R R, Torchilin V P. Challenges in Development of Targeted Liposomal Therapeutics[J]. AAPS J, 2012,14(2):303-315. doi: 10.1208/s12248-012-9330-0

    7. [7]

      Singh B, Jang Y, Maharjan S. Combination Therapy with Doxorubicin-Loaded Galactosylated Poly(ethyleneglycol)-Lithocholic Acid to Suppress the Tumor Growth in an Orthotopic Mouse Model of Liver Cancer[J]. Biomaterials, 2017,116:130-144. doi: 10.1016/j.biomaterials.2016.11.040

    8. [8]

      Bertrand N, Wu J, Xu X Y. Cancer Nanotechnology:The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology[J]. Adv Drug Deliver Rev, 2014,66:2-25. doi: 10.1016/j.addr.2013.11.009

    9. [9]

      Saei A A, Yazdani M, Lohse S E. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity[J]. Chem Mater, 2017,29(16):6578-6595. doi: 10.1021/acs.chemmater.7b01979

    10. [10]

      Vijayan V, Uthaman S, Park I K. Cell Membrane-Camouflaged Nanoparticles:A Promising Biomimetic Strategy for Cancer Theragnostics[J]. Polymers(Basel Switz), 2018,10(9):1374-1399.

    11. [11]

      Zhen X, Cheng P, Pu K. Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy[J]. Small, 2019,15(1)1804105. doi: 10.1002/smll.201804105

    12. [12]

      Sun H P, Su J H, Meng Q S. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors[J]. Adv Mater, 2016,28(43):9581-9588. doi: 10.1002/adma.201602173

    13. [13]

      Zhu J Y, Zheng D W, Zhang M K. Preferential Cancer Cell Self-recognition and Tumor Self-targeting by Coating Nanoparticles with Homotypic Cancer Cell Membrane[J]. Nano Lett, 2016,16(9):5895-5901. doi: 10.1021/acs.nanolett.6b02786

    14. [14]

      Lv Y L, Liu M, Zhang Y. Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging[J]. ACS Nano, 2018,12(2):1350-1358. doi: 10.1021/acsnano.7b07716

    15. [15]

      Ma K, Fu D, Liu Y J. Cancer Cell Targeting, Controlled Drug Release and Intracellular Fate of Biomimetic Membrane-Encapsulated Drug-Loaded Nano-Graphene Oxide Nanohybrids[J]. J Mater Chem B, 2018,6(31):5080-5090. doi: 10.1039/C8TB00804C

    16. [16]

      Jin J F, Krishnamachary B, Barnett J D. Human Cancer Cell Membrane-Coated Biomimetic Nanoparticles Reduce Fibroblast-Mediated Invasion and Metastasis and Induce T-Cells[J]. ACS Appl Mater Interfaces, 2019,11(8):7850-7861. doi: 10.1021/acsami.8b22309

    17. [17]

      Liu C M, Chen G B, Chen H H. Cancer Cell Membrane-Cloaked Mesoporous Silica Nanoparticles with a pH-Sensitive Gatekeeper for Cancer Treatment[J]. Colloids Surf, B, 2019,175:477-486. doi: 10.1016/j.colsurfb.2018.12.038

    18. [18]

      Li S Y, Cheng H, Qiu W X. Cancer Cell Membrane-Coated Biomimetic Platform for Tumor Targeted Photodynamic Therapy and Hypoxia-Amplified Bioreductive Therapy[J]. Biomaterials, 2017,142:149-161. doi: 10.1016/j.biomaterials.2017.07.026

    19. [19]

      Miao J, Yang X Q, Gao Z. Redox-Responsive Chitosan Oligosaccharide-SS-Octadecylamine Polymeric Carrier for Efficient Anti-Hepatitis B Virus Gene Therapy[J]. Carbohydr Polym, 2019,212:215-221. doi: 10.1016/j.carbpol.2019.02.047

    20. [20]

      Raza A, Hayat U, Rasheed T. Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems[J]. Eur J Med Chem, 2018,157:705-715. doi: 10.1016/j.ejmech.2018.08.034

    21. [21]

      Gilbert H F. Thiol/Disulfide Exchange Equilibria and Disulfide Bond Stability[J]. Method Enzymol, 1995,251:8-28. doi: 10.1016/0076-6879(95)51107-5

    22. [22]

      ZHANG Yi, WU Lingbo, HU Qian. Functionally Modified Hyperbranched Polyglycerols for Drug Delivery[J]. Chinese J Appl Chem, 2015,32(4):367-378.  

    23. [23]

      Mo R, Gu Z. Tumor Microenvironment and Intracellular Signal-Activated Nanomaterials for Anticancer Drug Delivery[J]. Mater Today, 2016,19(5):274-283. doi: 10.1016/j.mattod.2015.11.025

    24. [24]

      Feng S S, Wu Z X, Zhao Z Y. Engineering of Bone-and CD44-Dual-Targeting Redox-Sensitive Liposomes for the Treatment of Orthotopic Osteosarcoma[J]. ACS Appl Mater Interfaces, 2019,11(7):7357-7368. doi: 10.1021/acsami.8b18820

    25. [25]

      Zhang L S, Liu Y C, Zhang K. Redox-Responsive Comparison of Diselenide Micelles with Disulfide Micelles[J]. Colloid Polym Sci, 2019,297(2):225-238. doi: 10.1007/s00396-018-4457-x

    26. [26]

      Chen L L, Wang X H, Ji F L. New Bifunctional-Pullulan-Based Micelles with Good Biocompatibility for Efficient Co-delivery of Cancer-Suppressing p53 Gene and Doxorubicin to Cancer Cells[J]. RSC Adv, 2015,5(115):94719-94731. doi: 10.1039/C5RA17139C

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    4. [4]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    7. [7]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    8. [8]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    9. [9]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    10. [10]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    11. [11]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    12. [12]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    20. [20]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

Metrics
  • PDF Downloads(26)
  • Abstract views(1853)
  • HTML views(544)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return