Citation: XIE Chao, HONG Guohui, ZHAO Lina, YANG Weiqiang, WANG Jiku. Preparation and Electrochemical Performance of Praphene/Polypyrrole Nanofiber Composite as Supercapacitor Electrode Materials[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1422-1429. doi: 10.11944/j.issn.1000-0518.2019.12.190272 shu

Preparation and Electrochemical Performance of Praphene/Polypyrrole Nanofiber Composite as Supercapacitor Electrode Materials

  • Corresponding author: WANG Jiku, jikuwang@sina.com
  • Received Date: 14 October 2019
    Revised Date: 21 October 2019
    Accepted Date: 22 October 2019

    Fund Project: the National Natural Science Foundation of China 51404108Supported by the National Natural Science Foundation of China(No.51404108)

Figures(6)

  • Because of its high cyclic stability and good energy density, supercapacitor has become a research hotspot in energy storage devices. Electrode materials are the key factors to determine the electrochemical performance of supercapacitors. In this paper, Using poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (P123) as a soft template, graphene/polypyrrole nanofiber (GR/PPy NF) composite supercapacitor electrode materials were successfully prepared by one-step in situ chemical oxidation polymerization. The structure and morphology of composite materials were systematically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) and Fourier transform infrared spectrometer (FT-IR). The electrochemical properties of GR/PPy NF composite electrode materials were systematically analyzed by electrochemical methods. The results reveal that at the current density of 0.5 A/g, the nanocomposite has a maximum capacitance of 969.5 F/g, and can retain 88% of the initial capacitance after 600 cycles of charge and discharge, showing good cyclic stability and excellent electrochemical performance for the electrode materials of supercapacitor. The facile preparation and excellent performance of the GR/PPy NF make it a promising material for energy conversion/storage application.
  • 加载中
    1. [1]

      Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater, 2008,7(11):845-854. doi: 10.1038/nmat2297

    2. [2]

      Stoller M D, Park S, Zhu Y W. Graphene-Based Ultracapacitors[J]. Nano Lett, 2008,8:3498-3502. doi: 10.1021/nl802558y

    3. [3]

      Zhang L L, Zhao X S. Carbon-Based Materials as Supercapacitor Electrodes[J]. Chem Soc Rev, 2009,38(9):2520-2531. doi: 10.1039/b813846j

    4. [4]

      Liu J H, Xu X Y, Yu J L. Facile Construction of 3D Porous Carbon Nanotubes/Polypyrrole and Reduced Graphene Oxide on Carbon Nanotube Fiber for High-Performance Asymmetric Supercapacitors[J]. Electrochim Acta, 2019,314:9-19. doi: 10.1016/j.electacta.2019.05.059

    5. [5]

      Thu T V, Nguten T V, Le X D. Graphene-MnFe2O4-Polypyrrole Ternary Hybrids with Synergistic Effect for Supercapacitor Electrode[J]. Electrochim Acta, 2019,314:151-160. doi: 10.1016/j.electacta.2019.05.042

    6. [6]

      Oraon R, Adhikari A D, Tiwari S K. Fabrication of Nanoclay Based Graphene/Polypyrrole Nanocomposite:An Efficient Ternary Electrode Material for High Performance Supercapacitor[J]. Appl Clay Sci, 2015,118:231-238. doi: 10.1016/j.clay.2015.09.019

    7. [7]

      Burke A. Ultracapacitors:Why, How, and Where is the Technology[J]. J Power Sources, 2000,91(1):37-50. doi: 10.1016/S0378-7753(00)00485-7

    8. [8]

      Adusei P K, Kanakaraj S N, Gbordzoe S. A Scalable Nano-engineering Method to Synthesize 3D-Graphene-Carbon Nanotube Hybrid Fibers for Supercapacitor Applications[J]. Electrochim Acta, 2019,312:411-423. doi: 10.1016/j.electacta.2019.04.179

    9. [9]

      Zhou Y S, Zhou X R, Ge C W. Branched Carbon Nanotube/Carbon Nanofiber Composite for Supercapacitor Electrodes[J]. Mater Lett, 2019,246:174-177. doi: 10.1016/j.matlet.2019.03.074

    10. [10]

      An H F, Wang Y, Wang X Y. Polypyrrole/Carbon Aerogel Composite Materials for Supercapacitor[J]. J Power Sources, 2010,195(19):6964-6969. doi: 10.1016/j.jpowsour.2010.04.074

    11. [11]

      Ghenaatian H R, Mousavi M F, Rahmanifar M S. High Performance Hhybrid Supercapacitor Based on Two Nanostructured Conducting Polymers:Self-doped Polyaniline and Polypyrrole Nanofibers[J]. Electrochim Acta, 2012,78:212-222. doi: 10.1016/j.electacta.2012.05.139

    12. [12]

      Davoglio R A, Biaggio S R, Bocchi N. Flexible and High Hurface Area Composites of Carbon Fiber, Polypyrrole, and Poly(DMcT) for Supercapacitor Electrodes[J]. Electrochim Acta, 2013,93:93-100. doi: 10.1016/j.electacta.2013.01.062

    13. [13]

      ZHU Jianbo, XU Youlong, WANG Jie. Electropolymerization and Characterization of Fast Charge-Discharge PPy/F-SWNTs Composite Materials[J]. Acta Phys-Chim Sin, 2012,28(2):373-380. doi: 10.3866/PKU.WHXB201112021

    14. [14]

      SHI Qin, MEN Chunyan, LI Juan. Preparation and Electrochemical Capacitance Properties of Graphene Oxide/Polypyrrole Intercalation Composite[J]. Acta Phys-Chim Sin, 2013,29(8):1691-1697. doi: 10.3866/PKU.WHXB201306031

    15. [15]

      Wu S, Tian J, Yin X L. Preparation of Graphene-Polypyrrole Hollow Sphere by Pickering Emulsion Method and Their Electrochemical Performances as Supercapacitor Electrode[J]. Nano Brief Rep Rev, 2019,14(5):39-51.  

    16. [16]

      Hou M J, Xu M J, Hu Y M. Nanocellulose Incorporated Graphene/Polypyrrole Film with a Sandwich-Like Architecture for Preparing Flexible Supercapacitor Electrodes[J]. Electrochim Acta, 2019,313:245-254. doi: 10.1016/j.electacta.2019.05.037

    17. [17]

      Barakzehi M, Montazer M, Sharif F. A Textile-Based Wearable Supercapacitor Using Reduced Grapheme Oxide/Polypyrrole Composite[J]. Electrochim Acta, 2019,305:187-196. doi: 10.1016/j.electacta.2019.03.058

    18. [18]

      DU Wei, JU Xiangyu, WANG Meili. Study on the Preparation of Graphene/Polypyrrole Conductive Composites Supercapacitor Electrode[J]. Funct Mater Info, 2017(1):1034-1037, 1046.  

    19. [19]

      Kulandaivalu S, Sulaiman Y. Designing an Advanced Electrode of Mixed Carbon Materials Layered on Polypyrrole/Reduced Grapheme Oxide for High Specific Energy Supercapacitor[J]. J Power Sources, 2019,419:181-191. doi: 10.1016/j.jpowsour.2019.02.079

    20. [20]

      Kandasamy S K, Kandasamy K. Structural and Electrochemical Analysis of Microwave-Assisted Synthesis of Graphene/Polypyrrole Nanocomposite for Supercapacitor[J]. Int J Electrochem Sci, 2019,14(5):4718-4729.

    21. [21]

      Liu N, Luo F, Wu H X. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite[J]. Adv Funct Mater, 2008,18(10):1518-1525. doi: 10.1002/adfm.200700797

    22. [22]

      Zhang L L, Zhao S Y, Tian X N. Layered Graphene Oxide Nanostructures with Sandwiched Conducting Polymers as Supercapacitor Electrode[J]. Langmuir, 2010,26(22):17624-17628. doi: 10.1021/la103413s

    23. [23]

      Bose S, Kim N H, Kuila T. Electrochemical Performance of a Graphene-Polypyrrole Nanocomposite as a Supercapacitor Electrode[J]. Nanotechnology, 2011,22(29)295202. doi: 10.1088/0957-4484/22/29/295202

    24. [24]

      Wu F, Xie A M, Sun M X. Reduced Graphene Oxide(RGO) Modified Spongelike Polypyrrole(PPy) Aerogel for Excellent Electromagnetic Absorption[J]. J Mater Chem A, 2015,3(27):14358-14369. doi: 10.1039/C5TA01577D

    25. [25]

      Li H, Liu L F, Yang F L. Covalent Assembly of 3D Graphene/Polypyrrole Foams for Oil Spill Cleanup[J]. J Mater Chem A, 2013,1(10)3446. doi: 10.1039/c3ta00166k

    26. [26]

      Shen J F, Shi M, Ma H W. Hydrothermal Synthesis of Magnetic Reduced Graphene Oxide Sheets[J]. Mater Res Bull, 2011,46(11):2077-2083. doi: 10.1016/j.materresbull.2011.06.042

    27. [27]

      Kuilla T, Bhadra S, Yao D H. Recent Advances in Graphene Based Polymer Composites[J]. Prog Polym Sci, 2010,35(11):1350-1375. doi: 10.1016/j.progpolymsci.2010.07.005

    28. [28]

      Szabó T, Berkesi O, Dékány I. Drift Study of Deuterium-Exchanged Graphite Oxide[J]. Carbon, 2005,43(15):3186-3189. doi: 10.1016/j.carbon.2005.07.013

    29. [29]

      Dreyer D R, Park S, Bielawski C W. The Chemistry of Graphene Oxide[J]. Chem Soc Rev, 2010,39(1):228-240.  

    30. [30]

      Vishnuvardhan T K, Kulkarni V R, Basavaraja C. Synthesis, Characterization and A.C. Conductivity of Polypyrrole/Y2O3 Composites[J]. Bull Mater Sci, 2006,29:77-83. doi: 10.1007/BF02709360

    31. [31]

      Xu S Z, Zhou X J, Wu K. Electrochemical Performances of Layered Polypyrrole/Chemically Reduced Graphene Oxide Nanocomposites as Supercapacitor Electrodes[J]. J Electrochem, 2012,18:348-358.  

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

Metrics
  • PDF Downloads(13)
  • Abstract views(906)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return