Citation: SHI Ce, CAI Yuyang, CUI Fengchao, LI Yunqi. Characterization of Microscopic Structure of Nafion in Dispersion Using Small Angle X-Ray Scattering[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1406-1412. doi: 10.11944/j.issn.1000-0518.2019.12.190222 shu

Characterization of Microscopic Structure of Nafion in Dispersion Using Small Angle X-Ray Scattering

  • Corresponding author: LI Yunqi, yunqi@ciac.ac.cn
  • Received Date: 17 August 2019
    Revised Date: 11 September 2019
    Accepted Date: 18 September 2019

    Fund Project: the National Natural Science Foundation of China U1832177Supported by the National Natural Science Foundation of China(No.21774128, No.U1832177), and the Key Research Projects in Frontier Science of the Chinese Academy of Sciences(No.QYZDY-SSW-SLH027)the National Natural Science Foundation of China 21774128the Key Research Projects in Frontier Science of the Chinese Academy of Sciences QYZDY-SSW-SLH027

Figures(2)

  • Small angle X-ray scattering was used to characterize the microscopic structure of Nafion in its dispersion composed by different volume ratios of N-methylformamide and n-butanol. The results show that Nafion forms typical micelle structures in its dispersion, because of the synergistic effect of rigidity of main chain and hydrophobicity/hydrophilicity of main/side chain. The radius of gyration(Rg) of micelles exhibits the scale of -0.42 as the increase of Nafion mass concentration, which is in consistent with the theoretical scale of polyelectrolyte in salt free solvents. The correlation length between micelles shows a scale of -0.13, identical to the theoretical scale of typical neutral polymer solutions. Lower polarity n-butanol promotes the formation of long micelles, while high polarity N-methylformamide promotes the dispersion of Nafion. This study provides a clear guidance for understanding the properties of Nafion dispersions and the formation of micro-structure of Nafion films prepared by wet method.
  • 加载中
    1. [1]

      Kusoglu A, Weber A Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers[J]. Chem Rev, 2017,117(3):987-1104.  

    2. [2]

      Berlinger S A, McCloskey B D, Weber A Z. Inherent Acidity of Perfluorosulfonic Acid Ionomer Dispersions and Implications for Ink Aggregation[J]. J Phys Chem B, 2018,122(31):7790-7796. doi: 10.1021/acs.jpcb.8b06493

    3. [3]

      Balu R, Choudhury N R, Mata J P. Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent:A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation[J]. ACS Appl Mater Interfaces, 2019,11(10):9934-9946. doi: 10.1021/acsami.8b20645

    4. [4]

      WANG Hai, WANG Jianwu, XU Boqing. On Solubility of Perfluororesinsulfonic Acid[J]. Chinese J Appl Chem, 2001,18(10):798-801. doi: 10.3969/j.issn.1000-0518.2001.10.008 

    5. [5]

      ZU Yanbing, CHA Chuansin. Improvement of Hydrophilicity of Nafion Membrane Surface by Modification with Perfluorinated Surfactants[J]. Chinese J Appl Chem, 1995,12(1):33-36.  

    6. [6]

      Chen W, Cui F, Liu L. Assembled Structures of Perfluorosulfonic Acid Ionomers Investigated by Anisotropic Modeling and Simulations[J]. J Phys Chem B, 2017,121(41):9718-9724. doi: 10.1021/acs.jpcb.7b06412

    7. [7]

      Welch C, Labouriau A, Hjelm R. Nafion in Dilute Solvent Systems:Dispersion or Solution?[J]. ACS Macro Lett, 2012,1(12):1403-1407. doi: 10.1021/mz3005204

    8. [8]

      Martin C R, Rhoades T A, Ferguson J A. Dissolution of Perfluorinated Ion Containing Polymers[J]. Anal Chem, 1982,54(9):1639-1641. doi: 10.1021/ac00246a040

    9. [9]

      Allen F I, Comolli L R, Kusoglu A. Morphology of Hydrated as-Cast Nafion Revealed through Cryo Electron Tomography[J]. ACS Macro Lett, 2015,4(1):1-5. doi: 10.1021/mz500606h

    10. [10]

      Wang C, Krishnan V, Wu D. Evaluation of the Microstructure of Dry and Hydrated Perfluorosulfonic Acid Ionomers:Microscopy and Simulations[J]. J Mater Chem A, 2013,1(3):938-944. doi: 10.1039/C2TA01034H

    11. [11]

      Mochizuki T, Kakinuma K, Uchida M. Temperature-and Humidity-Controlled SAXS Analysis of Proton-Conductive Ionomer Membranes for Fuel Cells[J]. ChemSusChem, 2014,7(3):729-733. doi: 10.1002/cssc.201301322

    12. [12]

      Gebel G, Diat O. Neutron and X-Ray Scattering:Suitable Tools for Studying Ionomer Membranes[J]. Fuel Cells, 2005,5(2):261-276.  

    13. [13]

      Rubatat L, Gebel G, Diat O. Fibrillar Structure of Nafion:Matching Fourier and Real Space Studies of Corresponding Films and Solutions[J]. Macromolecules, 2004,37(20):7772-7783. doi: 10.1021/ma049683j

    14. [14]

      Schmidt-Rohr K, Chen Q. Parallel Cylindrical Water Nanochannels in Nafion Fuel-Cell Membranes[J]. Nat Mater, 2008,7(1):75-83.  

    15. [15]

      Fujimura M, Hashimoto T, Kawai H. Small-Angle X-Ray-Scattering Study of Perfluorinated Ionomer Membranes.2.Models for Ionic Scattering Maximum[J]. Macromolecules, 1982,15(1):136-144. doi: 10.1021/ma00229a028

    16. [16]

      Kusoglu A, Dursch T J, Weber A Z. Nanostructure/Swelling Relationships of Bulk and Thin-Film Pfsa Ionomers[J]. Adv Funct Mater, 2016,26(27):4961-4975. doi: 10.1002/adfm.201600861

    17. [17]

      Moore R B, Martin C R. Chemical and Morphological Properties of Solution-Cast Perfluorosulfonate Ionomers[J]. Macromolecules, 1988,21(5):1334-1339. doi: 10.1021/ma00183a025

    18. [18]

      Chu B, Wu C, Buck W. Light-Scattering Characterization of Poly(Tetrafluoroethylene).2.PTFE in Perfluorotetracosane-Molecular-Weight Distribution and Solution Properties[J]. Macromolecules, 1989,22(2):831-837. doi: 10.1021/ma00192a053

    19. [19]

      RosiSchwartz B, Mitchell G R. Extracting Force Fields for Disordered Polymeric Materials from Neutron Scattering Data[J]. Polymer, 1996,37(10):1857-1870. doi: 10.1016/0032-3861(96)87302-2

    20. [20]

      Kusoglu A, Savagatrup S, Clark K T. Role of Mechanical Factors in Controlling the Structure-Function Relationship of PFSA Ionomers[J]. Macromolecules, 2012,45(18):7467-7476. doi: 10.1021/ma301419s

    21. [21]

      Shi C, Xi S, Han Y. Structure, Rheology and Electrospinning of Zein and Poly(Ethylene Oxide) in Aqueous Ethanol Solutions[J]. Chinese Chem Lett, 2019,30(2):305-310. doi: 10.1016/j.cclet.2018.07.010

    22. [22]

      SHI Ce, LI Yunqi. Progress on the Application of Small-Angle X-Ray Scattering in the Study of Protein and Protein Complexes[J]. Acta Polym Sin, 2015,8:871-883.  

    23. [23]

      Liu L, Chen W, Li Y. An Overview of the Proton Conductivity of Nafion Membranes Through a Statistical Analysis[J]. J Membr Sci, 2016,504:1-9. doi: 10.1016/j.memsci.2015.12.065

    24. [24]

      Hsu W Y, Gierke T D. Ion-Transport and Clustering in Nafion Perfluorinated Membranes[J]. J Membr Sci, 1983,13(3):307-326. doi: 10.1016/S0376-7388(00)81563-X

    25. [25]

      Gierke T D, Munn G E, Wilson F C. The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-Angle and Small-Angle X-Ray Studies[J]. J Polym Sci Polym Phys, 1981,19(11):1687-1704. doi: 10.1002/pol.1981.180191103

    26. [26]

      Aldebert P, Dreyfus B, Pineri M. Small-Angle Neutron-Scattering of Perfluorosulfonated Ionomers in Solution[J]. Macromolecules, 1986,19(10):2651-2653. doi: 10.1021/ma00164a035

    27. [27]

      Aldebert P, Dreyfus B, Gebel G. Rod Like Micellar Structures in Perfluorinated Ionomer Solutions[J]. J Phys, 1988,49(12):2101-2109. doi: 10.1051/jphys:0198800490120210100

    28. [28]

      Gebel G. Structural Evolution of Water Swollen Perfluorosulfonated Ionomers from Dry Membrane to Solution[J]. Polymer, 2000,41(15):5829-5838. doi: 10.1016/S0032-3861(99)00770-3

    29. [29]

      Moore R B, Martin C R. Procedure for Preparing Solution-Cast Perfluorosulfonate Ionomer Films and Membranes[J]. Anal Chem, 1986,58(12):2569-2570. doi: 10.1021/ac00125a046

    30. [30]

      Gebel G, Aldebert P, Pineri M. Structure and Related Properties of Solution-Cast Perfluorosulfonated Ionomer Films[J]. Macromolecules, 1987,20(6):1425-1428. doi: 10.1021/ma00172a049

    31. [31]

      Laporta M, Pegoraro M, Zanderighi L. Recast Nafion-117 Thin Film from Water Solution[J]. Macromol Mater Eng, 2000,282(9):22-29.  

    32. [32]

      Ludvigsson M, Lindgren J, Tegenfeldt J. Crystallinity in Cast Nafion[J]. J Electrochem Soc, 2000,147(4):1303-1305.  

    33. [33]

      Collette F M, Thominette F, Mendil-Jakani H. Structure and Transport Properties of Solution-Cast Nafion Membranes Subjected to Hygrothermal Aging[J]. J Membr Sci, 2013,435:242-252. doi: 10.1016/j.memsci.2013.02.002

    34. [34]

      Wang Z, Tang H, Li J. Insight into the Structural Construction of a Perfluorosulfonic Acid Membrane Derived from a Polymeric Dispersion[J]. J Power Sources, 2014,256:383-393. doi: 10.1016/j.jpowsour.2014.01.096

    35. [35]

      Dai J, Teng X, Song Y. Effect of Casting Solvent and Annealing Temperature on Recast Nafion Membranes for Vanadium Redox Flow Battery[J]. J Membr Sci, 2017,522:56-67. doi: 10.1016/j.memsci.2016.09.014

    36. [36]

      Hansen C M. Hansen Solubility Parameters a User's Handbook[M]. 2nd ed. Boca Raton:CRC Press, 2007:6-15.

    37. [37]

      Sebastian D. Changes in Biomolecular Conformation Seen by Small Angle X-Ray Scattering[J]. Chem Rev, 2001,101(6):1763-1778. doi: 10.1021/cr990071k

    38. [38]

      Loppinet B, Gebel G, Williams C E. Small-Angle Scattering Study of Perfluorosulfonated Ionomer Solutions[J]. J Phys Chem B, 1997,101(10):1884-1892. doi: 10.1021/jp9623047

    39. [39]

      Colby R H. Structure and Linear Viscoelasticity of Flexible Polymer Solutions:Comparison of Polyelectrolyte and Neutral Polymer Solutions[J]. Rheol Acta, 2010,49(5):425-442. doi: 10.1007/s00397-009-0413-5

    40. [40]

      Yamaguchi M, Matsunaga T, Amemiya K. Dispersion of Rod-Like Particles of Nafion in Salt-Free Water/1-Propanol and Water/Ethanol Solutions[J]. J Phys Chem B, 2014,118(51):14922-14928.  

    41. [41]

      Li Y, Huang Q, Shi T. How Does Solvent Molecular Size Affect the Microscopic Structure in Polymer Solutions?[J]. J Chem Phys, 2006,125(4):0449021-0449026.  

    42. [42]

      de Gennes P G. Scaling Concepts in Polymer Physics[M]. Ithaca New York:Cornell University Press, 1979.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    6. [6]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    7. [7]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    10. [10]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    12. [12]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    13. [13]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    18. [18]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(34)
  • Abstract views(1542)
  • HTML views(459)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return