Citation: HE Huimin, XU Changshan, ZHENG Bowen, GUO Jiaxin, LIU Xiaonan, CHENG Liang. An Ion-Selective Microelectrode Method for In-situ Measurement of the Diffusion Coefficients of Ions[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1439-1446. doi: 10.11944/j.issn.1000-0518.2019.12.190111 shu

An Ion-Selective Microelectrode Method for In-situ Measurement of the Diffusion Coefficients of Ions

  • Corresponding author: XU Changshan, csxu@nenu.edu.cn
  • Received Date: 16 April 2019
    Revised Date: 10 June 2019
    Accepted Date: 9 July 2019

    Fund Project: the National Natural Science Foundation of China 11374046Supported by the National Natural Science Foundation of China(No.11374046, No.11074030)the National Natural Science Foundation of China 11074030

Figures(6)

  • Diffusion coefficient is an important parameter describing the diffusion process of a substance. However, the existing methods such as the membrane pool method, radioactive or fluorescent tracer method, and molecular dynamics simulation cannot be used to measure the ion diffusion coefficient in the biological system in real time. The ion-selective microelectrode has the advantages of rapid response, high selectivity, high sensitivity, high spatial resolution, and no pollution to the sample. Using the advantages of microelectrodes, this paper established the corresponding point source diffusion model by analyzing the ion concentration pulse signal formed by the rupture of protoplasts of single plant cells in culture medium, and derived the theoretical formula describing the ion concentration change with time. By fitting the experimentally measured pulse signal to obtain the diffusion coefficient of ions, a new method for in situ determination of ion diffusion coefficient by ion-selective microelectrode was established and applied to aloe cell protoplasts. When the ion diffusion coefficient is measured during the body rupture, the diffusion coefficients of Ca2+, Na+ and K+ are (6.51±0.12)×10-6 cm2/s, (2.93±0.15)×10-5 cm2/s and (3.03±0.35)×10-5 cm2/s, respectively. The results show that the Ca2+, Na+, and K+ diffusion coefficients obtained are slightly higher than those reported values (in pure water). This phenomenon might be caused by the increase of the intracellular pressure of the protoplasts in the hypotonic fluid. The increased pressure might have accelerated the diffusion of ions when the cell ruptured. This method does not interfere with the biological system, and better solves the problem of in-situ real-time measurement of ion diffusion coefficient in biological systems.
  • 加载中
    1. [1]

      Klaas N, Kees P J B, Robin A de G. Diffusion NMR Spectroscopy[J]. NMR Biomed, 2001,14(2):94-111. doi: 10.1002/nbm.686

    2. [2]

      HU Wenmiao, RAO Jinyong, JIA Biying. Determination of Liquid Diffusion Coefficient and Its Research Progress[J]. Guangzhou Chem Ind, 2016,44(15):4-6. doi: 10.3969/j.issn.1001-9677.2016.15.002

    3. [3]

      KONG Xuejun, LIU Yunqi, MA Peisheng. Error Analysis of Liquid Phase Diffusion Coefficient by Membrane Pool Method[J]. J Anqing Teachers College, 1999,5(4):52-54.

    4. [4]

      MA Youguang, ZHU Chunying, XU Shichang. Measurement of Liquid Phase Diffusion Coefficient by Laser Holographic Interferometry[J]. Appl Laser, 2003,23(6):337-341. doi: 10.3969/j.issn.1000-372X.2003.06.005

    5. [5]

      Zhang X, Li C G, Ye C H. Determination of Molecular Self-diffusion Coefficient Using Multiple Spin-echo NMR Spectroscopy with Removal of Convection and Background Gradient Artifacts[J]. Anal Chem, 2001,73(15):3528-3524. doi: 10.1021/ac0101104

    6. [6]

      LI Xiang. Numerical Simulation of Solute Taylor Dispersion in Capillary Channel[D]. Beijing: Beijing University of Chemical Technology, 2011(in Chinese). 

    7. [7]

      CHEN Liwei, HAN Qing, ZHANG Huimin. Preparation of Graphene-Based Microelectrode and Its Application in Electrochemical Sensing[J]. Chinese J Appl Chem, 2018,35(3):287-297.  

    8. [8]

      ZHUANG Yunlong, QI Deyao. Double-Barreled Sodium Ion-Selective Microelectrode for Biomedical Measurements[J]. Chinese J Appl Chem, 1990,7(5):94-96.  

    9. [9]

      Church J, Armas S M, Pate P K. Development and Characterization of Needle-Type Ion-Selective Microsensors for in situ Determination of Foliar Uptake of Zn2+ in Citrus Plants[J]. Electroanalysis, 2017,30(4):626-632.  

    10. [10]

      Wang J J, Bishop P L. Fabrication, Calibration and Evaluation of a Phosphate Ion-Selective Microelectrode[J]. Environ Pollut, 2010,158(12):3612-3617. doi: 10.1016/j.envpol.2010.08.007

    11. [11]

      Levin M. Molecular Bioelectricity in Developmental Biology:New Tools and Recent Discoveries[J]. BioEssays, 2012,34(3):205-217. doi: 10.1002/bies.201100136

    12. [12]

      Smith P J S. Non-invasive Ion Probes-Tools for Measuring Transmembrane Ion Flux[J]. Nature, 1995,378(6557):645-646. doi: 10.1038/378645a0

    13. [13]

      XU Xiuxian. Preparation of Ion-selective Microelectrodes and Research on Calcium Ion Release of Aloe Protoplast Caused by ZnO Nanoparticles[D]. Changchun: Northeast Normal University, 2016(in Chinese).

    14. [14]

      WANG Hongxia, FAN Xuehui. Separation of Aloe Protoplasts[J]. J Anhui Agric Sci, 2008,36(19):8028-8034. doi: 10.3969/j.issn.0517-6611.2008.19.035

    15. [15]

      WANG Xin'gang, MAO Hanping, ZUO Zhiyu. Application of Ion Selective Microelectrode and Patch Clamp in Electrophysiological Detection[J]. J Agric Mech Res, 2007,10(10):36-39. doi: 10.3969/j.issn.1003-188X.2007.10.010

    16. [16]

      Thomas R C, Bers D M. Calcium-sensitive Mini-and Microelectrodes[J]. Cold Spring Harbor Protocols, 2013,8(4):305-309.  

    17. [17]

      MENG Jiao. Study on the Diffusion of Ca2+ Ions During the Rupturing Process of MWCNTs Processed Aloe Protoplasts in Hypotonic Solution[D]. Changchun: Northeast Normal University, 2016(in Chinese). 

    18. [18]

      Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M]. 2nd ed. Oxford: Oxford University Press, 1959.

    19. [19]

      Donahue B S, Abercrombie R F. Free Diffusion Coefficient of Ionic Calcium in Cytoplasm[J]. Cell Calcium, 1987,8(6):437-448. doi: 10.1016/0143-4160(87)90027-3

    20. [20]

      Bourg I C, Richter F M, Christensen J N. Isotopic Mass Dependence of Metal Cation Diffusion Coefficients in Liquid Water[J]. Geochim Cosmochim Acta, 2010,74(8):2249-2256. doi: 10.1016/j.gca.2010.01.024

    21. [21]

      Ghaffari A, Rahbar-kelishami A. MD Simulation and Evaluation of the Self-diffusion Coefficients in Aqueous NaCl Solutions at Different Temperatures and Concentrations[J]. J Mol Liq, 2013,187:238-245. doi: 10.1016/j.molliq.2013.08.004

    22. [22]

      Esmaeilberg M A, Movahedird S. Prediction of the Self-diffusion Coefficients in Aqueous KCl Solution Using Molecular Dynamics:A Comparative Study of Two Force Fields[J]. Korean J Chem Eng, 2017,34(4):977-986. doi: 10.1007/s11814-016-0367-0

    23. [23]

      Rukmani S J, Kupgan G, Anstine D M. A Molecular Dynamics Study of Water-Soluble Polymers:Analysis of Force Fields from Atomistic Simulations[J]. Mol Simul, 2019,45(4/5):310-321.

  • 加载中
    1. [1]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    12. [12]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    20. [20]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

Metrics
  • PDF Downloads(17)
  • Abstract views(640)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return