Citation: REN Jinping, TAO Furong, CUI Yuezhi, LIU Libin. Progress of Cellulose-Based Superwettable Materials for Oil/Water Separation[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1361-1370. doi: 10.11944/j.issn.1000-0518.2019.12.190107 shu

Progress of Cellulose-Based Superwettable Materials for Oil/Water Separation

  • Corresponding author: TAO Furong, frtao2015@126.com
  • Received Date: 16 April 2019
    Revised Date: 16 July 2019
    Accepted Date: 16 August 2019

    Fund Project: the Project of Shandong Province Higher Educational Science and Technology Program J18KZ004Supported by the Project of Shandong Province Higher Educational Science and Technology Program(No.J18KZ004)

Figures(3)

  • Recent progress of cellulose-based superwettable materials for oil/water separation is reviewed in this paper. Firstly, three types of cellulose-based oil/water separation materials are summarized according to their different wettability. The intelligent responsive materials are highlighted along with our research work. Besides, the research of cellulose-based superwettable materials for other fields are also introduced. We envision further directions of cellulose-based materials and put forward some urgent questions that should be solved.
  • 加载中
    1. [1]

      Gao J F, Song X, Huang X W. Facile Preparation of Polymer Microspheres and Fibers with a Hollow Core and Porous Shell for Oil Adsorption and Oil/Water Separation[J]. Appl Surf Sci, 2018,439:394-404. doi: 10.1016/j.apsusc.2018.01.013

    2. [2]

      Fard A K, Rhadfi T, Mckay G. Enhancing Oil Removal from Water Using Ferric Oxide Nanoparticles Doped Carbon Nanotubes Adsorbents[J]. Chem Eng J, 2016,293:90-101. doi: 10.1016/j.cej.2016.02.040

    3. [3]

      Zouboulis A I, Avranas A. Treatment of Oil-in-Water Emulsions by Coagulation and Dissolved-Air Flotation[J]. Colloids Surf A, 2000,172(1/3):153-161.  

    4. [4]

      Nikkhah M, Tohidian T, Rahimpour M R. Efficient Demulsification of Water-in-Oil Emulsion by a Novel Nano-Titania Modified Chemical Demulsifier[J]. Chem Eng Res Des, 2015,94:164-172. doi: 10.1016/j.cherd.2014.07.021

    5. [5]

      Tashiro K, Kobayashi M. Theoretical Evaluation of Three-Dimensional Elastic Constants of Native and Regenerated Celluloses:Role of Hydrogen Bonds[J]. Polymer, 1991,32(8):1516-1526. doi: 10.1016/0032-3861(91)90435-L

    6. [6]

      Šturcová A, R Davies G, J Eichhorn S. Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers[J]. Biomacromolecules, 2005,6(2):1055-1061. doi: 10.1021/bm049291k

    7. [7]

      Mansouri J, Harrisson S, Chen V. Strategies for Controlling Biofouling in Membrane Filtration Systems:Challenges and Opportunities[J]. J Mater Chem, 2010,20(22):4567-4586. doi: 10.1039/b926440j

    8. [8]

      Liu R C, Dangwal S, Shaik I. Hydrophilicity-Controlled MFI-Type Zeolite-Coated Mesh for Oil/Water Separation[J]. Sep Purif Technol, 2018,195:163-169. doi: 10.1016/j.seppur.2017.11.064

    9. [9]

      Xue Z X, Cao Y Z, Liu N. Special Wettable Materials for Oil/Water Separation[J]. J Mater Chem A, 2014,2(8):2445-2460. doi: 10.1039/C3TA13397D

    10. [10]

      Cheng Z J, Li C, Lai H. A pH-Responsive Superwetting Nanostructured Copper Mesh Film for Separating both Water-in-Oil and Oil-in-Water Emulsions[J]. RSC Adv, 2016,6(76):72317-72325. doi: 10.1039/C6RA14454C

    11. [11]

      Guo J H, Wang J K, Gao Y H. pH-Responsive Sponges Fabricated by Ag-S Ligands Possess Smart Double-Transformed Superhydrophilic Superhydrophobic Superhydrophilic Wettability for Oil-Water Separation[J]. ACS Sustainable Chem Eng, 2017,5(11):10772-10782. doi: 10.1021/acssuschemeng.7b02734

    12. [12]

      Fu Y C, Jin B Y, Zhang Q H. pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2017,9(35):30161-30170. doi: 10.1021/acsami.7b09159

    13. [13]

      Pham V H, Dickerson J H. Superhydrophobic Silanized Melamine Sponges as High Efficiency Oil Absorbent Materials[J]. ACS Appl Mater Interfaces, 2014,6(16):14181-14188. doi: 10.1021/am503503m

    14. [14]

      Ge J, Ye Y D, Yao H B. Pumping Through Porous Hydrophobic/Oleophilic Materials:An Alternative Technology for Oil Spill Remediation[J]. Angew Chem Int Ed, 2014,53(14):3612-3616. doi: 10.1002/anie.201310151

    15. [15]

      Jang S H, Jeong Y G, Min B G. Preparation and Lead Ion Removal Property of Hydroxyapatite/Polyacrylamide Composite Hydrogels[J]. J Hazard Mater, 2008,159(2/3):294-299.  

    16. [16]

      Laus R, de Fávere V T. Competitive Adsorption of Cu(Ⅱ) and Cd(Ⅱ) Ions by Chitosan Crosslinked with Epichlorohydrin-Triphosphate[J]. Bioresour Technol, 2011,102(19):8769-8776. doi: 10.1016/j.biortech.2011.07.057

    17. [17]

      Zhao L, Mitomo H. Adsorption of Heavy Metal Ions from Aqueous Solution onto Chitosan Entrapped CM-Cellulose Hydrogels Synthesized by Irradiation[J]. J Appl Polym Sci, 2008,110(3):1388-1395.  

    18. [18]

      MENG Fanning, SONG Jing, ZHANG Xinmiao. Research Progress of Membranes with Special Wettability for Oil-Water Separation[J]. Environ Prot Chem Ind, 2019:1-9.  

    19. [19]

      Zhou K, Zhang Q G, Li H M. Ultrathin Cellulose Nanosheet Membranes for Superfast Separation of Oil-in-Water Nanoemulsions[J]. Nanoscale, 2014,6(17):10363-10369. doi: 10.1039/C4NR03227F

    20. [20]

      Gao X F, Xu L P, Xue Z X. Dual-Scaled Porous Nitrocellulose Membranes with Underwater Superoleophobicity for Highly Efficient Oil/Water Separation[J]. Adv Mater, 2014,26(11):1771-1775. doi: 10.1002/adma.201304487

    21. [21]

      Zhang H, Li Y Q, Shi R H. A Robust Salt-Tolerant Superoleophobic Chitosan/Nanofibrillated Cellulose Aerogel for Highly Efficient Oil/Water Separation[J]. Carbohydr Polym, 2018,200:611-615. doi: 10.1016/j.carbpol.2018.07.071

    22. [22]

      Sun F F, Liu W, Dong Z X. Underwater Superoleophobicity Cellulose Nanofibril Aerogel Through Regioselective Sulfonation for Oil/Water Separation[J]. Chem Eng J, 2017,330:774-782. doi: 10.1016/j.cej.2017.07.142

    23. [23]

      Wang G, He Y, Wang H. A Cellulose Sponge with Robust Superhydrophilicity and Underwater Superoleophobicity for Highly Effective Oil/Water Separation[J]. Green Chem, 2015,17(5):3093-3099. doi: 10.1039/C5GC00025D

    24. [24]

      Chen W J, Su Y L, Peng J M. Engineering a Robust, Versatile Amphiphilic Membrane Surface Through Forced Surface Segregation for Ultralow Flux-Decline[J]. Adv Funct Mater, 2011,21(1):191-198. doi: 10.1002/adfm.201001384

    25. [25]

      Chen W J, Su Y L, Zhang L. In Situ Generated Silica Nanoparticles as Pore-Forming Agent for Enhanced Permeability of Cellulose Acetate Membranes[J]. J Membr Sci, 2010,348(1/2):75-83.  

    26. [26]

      Xue Z X, Liu M J, Jiang L. Recent Developments in Polymeric Superoleophobic Surfaces[J]. J Polym Sci Pol Phys, 2012,50(17):1209-1224. doi: 10.1002/polb.23115

    27. [27]

      Cao Y Z, Chen Y N, Liu N. Mussel-Inspired Chemistry and Stöber Method for Highly Stabilized Water-in-Oil Emulsions Separation[J]. J Mater Chem A, 2014,2(48):20439-20443. doi: 10.1039/C4TA05075D

    28. [28]

      Dang Z, Liu L B, Li Y. In Situ and Ex Situ pH-Responsive Coatings with Switchable Wettability for Controllable Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2016,8(45):31281-31288. doi: 10.1021/acsami.6b09381

    29. [29]

      Fang W Y, Liu L B, Guo G L. Tunable Wettability of Electrospun Polyurethane/Silica Composite Membranes for Effective Separation of Water-in-Oil and Oil-in-Water Emulsions[J]. Chem-Eur J, 2017,23(47):11253-11260. doi: 10.1002/chem.201701409

    30. [30]

      Chen W, He H, Zhu H. Thermo-responsive Cellulose-Based Material with Switchable Wettability for Controllable Oil/Water Separation[J]. Polymers, 2018,10(6)592. doi: 10.3390/polym10060592

    31. [31]

      Zhan H, Peng N, Lei X. UV-Induced Self-Cleanable TiO2/Nanocellulose Membrane for Selective Separation of Oil/Water Emulsion[J]. Carbohydr Polym, 2018,201:464-470. doi: 10.1016/j.carbpol.2018.08.093

    32. [32]

      Cheng M X, He H, Zhu H X. Preparation and Properties of pH-Responsive Reversible-Wettability Biomass Cellulose-Based Material for Controllable Oil/Water Separation[J]. Carbohydr Polym, 2019,203:246-255. doi: 10.1016/j.carbpol.2018.09.051

    33. [33]

      Fan T, Qian Q H, Hou Z H. Preparation of Smart and Reversible Wettability Cellulose Fabrics for Oil/Water Separation Using a Facile and Economical Method[J]. Carbohydr Polym, 2018,200:63-71. doi: 10.1016/j.carbpol.2018.07.040

    34. [34]

      Nosonovsky M, Bhushan B. Biomimetic Superhydrophobic Surfaces:Multiscale Approach[J]. Nano Lett, 2007,7(9):2633-2637. doi: 10.1021/nl071023f

    35. [35]

      Patankar N A. Mimicking the Lotus Effect:Influence of Double Roughness Structures and Slender Pillars[J]. Langmuir, 2004,20(19):8209-8213. doi: 10.1021/la048629t

    36. [36]

      Peng H I, Wang H, Wu J N. Preparation of Superhydrophobic Magnetic Cellulose Sponge for Removing Oil from Water[J]. Ind Eng Chem Res, 2016,55(3):832-838. doi: 10.1021/acs.iecr.5b03862

    37. [37]

      Matin A, Baig U, Gondal M A. Facile Fabrication of Superhydrophobic/Superoleophilic Microporous Membranes by Spray-Coating Ytterbium Oxide Particles for Efficient Oil-Water Separation[J]. J Membr Sci, 2018,548:390-397. doi: 10.1016/j.memsci.2017.11.045

    38. [38]

      Guo D Y, Chen J H, Hou K. A Facile Preparation of Superhydrophobic Halloysite-Based Meshes for Efficient Oil-Water Separation[J]. Appl Clay Sci, 2018,156:195-201. doi: 10.1016/j.clay.2018.01.034

    39. [39]

      XU Yao. Development and Application of Sol-Gel Chemistry[J]. Sci Technol Rev, 2017,35(4)96.  

    40. [40]

      LIU Xiaohong, CHEN Zhiyong, DENG Shanjiang. Current Situation and Development Trend of Vapor Deposition Tachnology[J]. J North China Inst Aerospace Eng, 2006(3):26-28.  

    41. [41]

      MA Shanshan, ZHANG Meiyun, YANG Bin. Study on the Preparation of Cellulose-Based Porous Material by Freeze-Drying Process[J]. China Pulp Paper, 2017,36(11):29-36.  

    42. [42]

      Lv N, Wang X L, Peng S T. Superhydrophobic/Superoleophilic Cotton-Oil Absorbent:Preparation and Its Application in Oil/Water Separation[J]. RSC Adv, 2018,8(53):30257-30264. doi: 10.1039/C8RA05420G

    43. [43]

      Zhou C L, Chen Z D, Yang H. A Nature-Inspired Strategy Toward Superhydrophobic Fabrics for Versatile Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2017,9(10):9184-9194. doi: 10.1021/acsami.7b00412

    44. [44]

      Guan H, Cheng Z Y, Wang X Q. Highly Compressible Wood Sponges with a Spring-Like Lamellar Structure as Effective and Reusable Oil Absorbents[J]. ACS Nano, 2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763

    45. [45]

      Zhou S K, Liu P P, Wang M. Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation[J]. ACS Sustainable Chem Eng, 2016,4(12):6409-6416. doi: 10.1021/acssuschemeng.6b01075

    46. [46]

      Mi H Y, Jing X, Politowicz A L. Highly Compressible Ultra-Light Anisotropic Cellulose/Graphene Aerogel Fabricated by Bidirectional Freeze Drying for Selective Oil Absorption[J]. Carbon, 2018,132:199-209. doi: 10.1016/j.carbon.2018.02.033

    47. [47]

      Yuan T, Meng J Q, Hao T Y. A Scalable Method Toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation[J]. ACS Appl Mater Interfaces, 2015,7(27):4896-14904.  

    48. [48]

      He K, Duan H R, Chen G Y. Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings:Overcoming the Imperative Challenge of Oil-Water Separation Membranes[J]. ACS Nano, 2015,9:9188-9198. doi: 10.1021/acsnano.5b03791

    49. [49]

      Zhang S Y, Lu F, Tao L. Bio-inspired Anti-Oil-Fouling Chitosan-Coated Mesh for Oil/Water Separation Suitable for Broad pH Range and Hyper-saline Environments[J]. ACS Appl Mater Interfaces, 2013,5(22):11971-11976. doi: 10.1021/am403203q

    50. [50]

      Chen P C, Xu Z K. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation[J]. Sci Rep, 2013,3(1)2776. doi: 10.1038/srep02776

    51. [51]

      Bethke K, Palant ken S, Andrei V. Functionalized Cellulose for Water Purification, Antimicrobial Applications and Sensors[J]. Adv Funct Mater, 2018,28(23)1800409. doi: 10.1002/adfm.201800409

    52. [52]

      Voisin H, Bergstr m L, Liu P. Nanocellulose-Based Materials for Water Purification[J]. Nanomaterials, 2017,7(3)57. doi: 10.3390/nano7030057

    53. [53]

      Huang J D, Lyu S Y, Chen Z L. A Facile Method for Fabricating Robust Cellulose Nanocrystal/SiO2 Superhydrophobic Coatings[J]. J Colloid Interface Sci, 2019,536:349-362. doi: 10.1016/j.jcis.2018.10.045

    54. [54]

      Baidya A, Ganayee M A, Jakka Ravindran S. Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks[J]. ACS Nano, 2017,11(11):11091-11099. doi: 10.1021/acsnano.7b05170

    55. [55]

      Xiong R, Kim H S, Zhang S D. Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport[J]. ACS Nano, 2016,11(12):12008-12019.  

    56. [56]

      Li L X, Hu T, Sun H X. Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation[J]. ACS Appl Mater Interfaces, 2017,9(21):18001-18007. doi: 10.1021/acsami.7b04687

    57. [57]

      Yang H T, Deng Y L. Preparation and Physical Properties of Superhydrophobic Papers[J]. J Colloid Interface Sci, 2008,325(2):588-593. doi: 10.1016/j.jcis.2008.06.034

    58. [58]

      Vasiljević J, Tomšič B, Jerman I. Novel Multifunctional Water- and Oil-Repellent, Antibacterial, and Flame-Retardant Cellulose Fibres Created by the Sol-Gel Process[J]. Cellulose, 2014,21(4):2611-2623. doi: 10.1007/s10570-014-0293-4

    59. [59]

      Makanjuola O, Ahmed F, Janajreh I. Development of a Dual-Layered PVDF-HFP/Cellulose Membrane with Dual Wettability for Desalination of Oily Wastewater[J]. J Membr Sci, 2019,570/571:418-426. doi: 10.1016/j.memsci.2018.10.028

    60. [60]

      Wang N, Xiong D S, Pan S. Superhydrophobic Paper with Superior Stability Against Deformations and Humidity[J]. Appl Surf Sci, 2016,389:354-360. doi: 10.1016/j.apsusc.2016.07.110

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    4. [4]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    5. [5]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    13. [13]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    17. [17]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    18. [18]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(2)
  • Abstract views(434)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return