Pore Structure of Matrix Graphite and Its Effect on Ag Diffusion
- Corresponding author: XU Gang, gangx@tsinghua.edu.cn CHEN Xiaotong, chenxiaotong@tsinghua.edu.cn
Citation:
FAN Luhao, ZHANG Chi, JIAO Zengtong, HE Linfeng, QI Meili, XU Gang, CHEN Xiaotong. Pore Structure of Matrix Graphite and Its Effect on Ag Diffusion[J]. Chinese Journal of Applied Chemistry,
;2019, 36(12): 1430-1438.
doi:
10.11944/j.issn.1000-0518.2019.12.190106
Zhang Z, Yu S. Future HTGR Developments in China after the Criticality of the HTR-10[J]. Nucl Eng Des, 2002,218(1/3):249-257.
Powers J J, Wirth B D. A Review of TRISO Fuel Performance Models[J]. J Nucl Mater, 2010,405(1):74-82. doi: 10.1016/j.jnucmat.2010.07.030
Yeo S, Yun J, Kim S. Fabrication Methods and Anisotropic Properties of Graphite Matrix Compacts for Use in HTGR[J]. J Nucl Mater, 2017,499:383-393.
TANG Chunhe. High Temperature Gas Cooled Reactor Fuel Element[M]. Chemical Industry Press, 2007(in Chinese).
Yu X, Yu S. Analysis of Fuel Element Matrix Graphite Corrosion in HTR-PM for Normal Operating Conditions[J]. Nucl Eng Des, 2010,240(4):738-743. doi: 10.1016/j.nucengdes.2009.12.015
CHUAN Xiuyun, ZHANG Xiaolin. Properties, Types, Production and Application of Nuclear Graphite in Nuclear Reactors[J]. Carbon Tech, 2009,28(6):28-35.
Sumita J, Shibata T, Iyoku T. Principle Design of Graphite Components for HTTR and R&D on Nuclear Graphite for HTGR in JAEA[J]. Key Eng Mater, 2016,697:797-806. doi: 10.4028/www.scientific.net/KEM.697.797
ZHOU Xiangwen, YI Zilong, LU Zhenming. Graphite Materials in Pebble-Bed High Temperature Gas-Cooled Reactors[J]. Carbon Tech, 2012,31(6):9-13.
ZHANG Zuoyi, WU Zongxin, WANG Dazhong. Development Strategy of High Temperature Gas Cooled Reactor in China[J]. Eng Sci, 2019,21(1):12-19.
Iniotakis N, Decken C B, Röllig K. Plate-Out of Fission Products and Its Effect on Maintenance and Repair[J]. Nucl Eng Des, 1984,78(2):273-284.
CAO Jianzhu, XI Shuren. Study on Retaining Performance of Fuel Element and Coated Particles to Fission Products in HTGR[J]. Nucl Power Eng, 1999(5):440-443, 458.
JIANG Ziying, ZHANG Yanqi, WEN Baoyin. Study on Minimization Strategy of Radioactive Waste of HTR-PM Nuclear Power Plants[J]. Radiat Prot, 2018,38(2):161-170.
Hoinkis E, Allen A J. A Study of Precursory, Original, and Oxidized Graphitic Matrix A3-3 by Small Angle Neutron Scattering[J]. Carbon, 1991,29:93-100. doi: 10.1016/0008-6223(91)90099-5
Mergia K, Stefanopoulos K L, Ordás N. A Comparative Study of the Porosity of Doped Graphites by Small Angle Neutron Scattering, Nitrogen Adsorption and Helium Pycnometry[J]. Micropor Mesopor Mater, 2010,134:141-149. doi: 10.1016/j.micromeso.2010.05.019
Jones K L, Laudone G M, Matthews G P. A Multi-technique Experimental and Modelling Study of the Porous Structure of IG-110 and IG-430 Nuclear Graphite[J]. Carbon, 2018,128:1-11. doi: 10.1016/j.carbon.2017.11.076
Kadlec O. On the Theory of Capillary Condensation and Mercury Intrusion in Determining Carbon Porosity[J]. Carbon, 1989,27(1):141-155. doi: 10.1016/0008-6223(89)90168-1
Wang P, Contescu C I, Yu S. Pore Structure Development in Oxidized IG-110 Nuclear Graphite[J]. J Nucl Mater, 2012,430(1/3):229-238.
Karthik C, Kane J, Butt D P. Neutron Irradiation Induced Microstructural Changes in NBG-18 and IG-110 Nuclear Graphites[J]. Carbon, 2015,86:124-131. doi: 10.1016/j.carbon.2015.01.036
LU Zhenming, ZHANG Jie, ZHOU Xiangwen. Optimization of Carbonization Process in Manufacture of Fuel Elements for HTGR[J]. Nucl Power Eng, 2013,34(5):71-75.
Hoinkis E, Robens E. Surface Area and Porosity of Unmodified Graphitic Matrices A3-27 and A3-3(1950) and Oxidized Matrix A3-3(1950)[J]. Carbon, 1989,27(1):157-168. doi: 10.1016/0008-6223(89)90169-3
Yao Y, Liu D. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals[J]. Fuel, 2012,95:152-158. doi: 10.1016/j.fuel.2011.12.039
CAI Shaohua. Elemental Inorganic Chemistry[M]. Sun Yat-sen University Press, 1998(in Chinese).
Trick K A, Saliba T E. Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite[J]. Carbon, 1995,33(11):1509-1515. doi: 10.1016/0008-6223(95)00092-R
XU Shijiang, KANG Feiyu. Carbon and Graphite Materials in Nuclear Engineering[M]. Beijing:Tsinghua University Press, 2010(in Chinese).
Hoinkis E. The Diffusion of Silver in the Graphitic Matrix A3-3 and A3-27[J]. J Nucl Mater, 1994,209(2):132-147. doi: 10.1016/0022-3115(94)90288-7
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
A.mercury pressure-cumulative intrusion(1 psia=6.890 kPa); B.pore volume-pore size
A.mercury pressure-cumulative intrusion(1 psia=6.890 kPa); B.pore volume-pore size
A.mercury pressure-cumulative intrusion(1 psia=6.890 kPa); B.pore volume-pore size
Before:A.P6-800; C.P8-800; E.P10-800. After:B.P6-1400-12h; D.P8-1400-12h; F.P10-1400-12h