Citation: LIN Shengsheng, HE Qingyun, ZHOU Jiamin, ZHAO Mingpeng, FENG Zongcai, YU Biao, SONG Xiumei. Colorimetric Sensors for Anion Recognition Based on Benzeneazophenol[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1447-1455. doi: 10.11944/j.issn.1000-0518.2019.12.190084 shu

Colorimetric Sensors for Anion Recognition Based on Benzeneazophenol

  • Corresponding author: SONG Xiumei, sxmfn@163.com
  • Received Date: 1 April 2019
    Revised Date: 10 June 2019
    Accepted Date: 11 July 2019

    Fund Project: the Science and Technology Planning Project of Zhanjiang 2015A020203the National Natural Science Foundation of China 21805125the Innovation and Entrepreneurship Training Program for College Students 201810579701Supported by the National Natural Science Foundation of China(No.21805125), the Science and Technology Planning Project of Zhanjiang(No.2015A020203), and the Innovation and Entrepreneurship Training Program for College Students(No.201810579701)

Figures(8)

  • Three colorimetric sensors S1, S2 and S3 based on azobenzene containing different numbers of active phenolic hydroxyl groups have been designed and synthesized. The sensors in CH3CN exhibit high sensitivity toward F-, H2PO4- and AcO-. The detection limit of S1, S2 and S3 was determined to be 1.25×10-7~3.62×10-7 mol/L for F-. The sensitivity of sensors S1, S2 and S3 for anions were affected by the configuration, charge density and basicity of anions. 1H NMR titration has been performed to study reaction mechanism, which was considered to be direct consequence of hydrogen-bonding between the phenolic group of sensor and anion.
  • 加载中
    1. [1]

      Gale P A. Anion Receptor Chemistry[J]. Chem Comun, 2011,47(1):82-86. doi: 10.1039/C0CC00656D

    2. [2]

      Sun H, Dong X, Liu S. Excellent BODIPY Dye Containing Dimesitylboryl Groups as Pet Based Fluorescent Probes for Fluoride[J]. J Phys Chem C, 2011,115(40):19947-19954. doi: 10.1021/jp206396v

    3. [3]

      Li S, Zhang C, Huang S. Highly Selective Colorimetric and Fluorescent Sensors for the Fluoride Anion Based on Imidazo[4, 5-f]-1, 10-phenanthroline Metal-Complexes[J]. RCS Adv, 2012,2:4215-4219.  

    4. [4]

      Yong X, Su M, Wan W. 2-Thiohydantoin Containing OH and NH Recognition Subunits:A Fluoride Ion Selective Colorimetric Sensor[J]. New J Chem, 2013,37(5):1591-1594. doi: 10.1039/c3nj41134f

    5. [5]

      Li X G, Zhang D, Li J. Emission "Off-On" Effect from Curopium Complexes Triggered by AcO Anion:Synthesis, Characterization and Sensing Performance[J]. Spectrochim Acta, Part A, 2014,127:1-9. doi: 10.1016/j.saa.2014.02.042

    6. [6]

      Khan S S, Riaz M. Determination of UV Active Inorganic Anions in Potable and High Salinity Water by Ion Pair Reversed Phase Liquid Chromatography[J]. Talanta, 2014,122:209-213. doi: 10.1016/j.talanta.2014.01.059

    7. [7]

      Hu B B, Lu P, Wang Y G. A Highly Selective and Real-Time Ratiometric Fluorescent Chemosensor for Fluoride Anion Detection under Either Neutral or Basic Condition[J]. Sens Actuators, B, 2014,195:320-323. doi: 10.1016/j.snb.2014.01.058

    8. [8]

      Guha S, Saha S. Fluoride Ion Sensing by an Anion-π Interaction[J]. J Am Chem Soc, 2010,132(50):17674-17677. doi: 10.1021/ja107382x

    9. [9]

      Xu W, Liu S, Sun H. FRET-Based Probe for Fluoride Based on a Phosphorescent Rridium(Ⅲ) Complex Containing Triarylboron Groups[J]. J Mater Chem, 2011,21(21):7572-7581. doi: 10.1039/c1jm00071c

    10. [10]

      Baker J L, Sudarsan N, Weinberg Z. Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride[J]. Science, 2012,335(6065):233-235. doi: 10.1126/science.1215063

    11. [11]

      Aboubakr H, Brisset H, Siri O. Highly Specific and Reversible Fluoride Sensor Based on an Organic Semiconductor[J]. Anal Chem, 2013,85(20):9968-9974. doi: 10.1021/ac4027934

    12. [12]

      Iniya M, Jeyanthi D, Krishnaveni K. A Bifunctional Chromogenic and Fluorogenic Probe for F- and Al3+ Based on Azo-Benzimidazole Conjugate[J]. J Lumin, 2015,157:383-389. doi: 10.1016/j.jlumin.2014.09.018

    13. [13]

      Padhan S K, Podh M B, Sahu P K. Optical Discrimination of Fluoride and Cyanide Ions by Coumarin-Salicylidene Based Chromofluorescent Probes in Organic and Aqueous Medium[J]. Sens Actuators, B, 2018,255:1376-1390. doi: 10.1016/j.snb.2017.08.133

    14. [14]

      Li Z Y, Su H K, Tong H X. Calix [4] arene Containing Thiourea and Coumarin Functionality as Highly Selective Fluorescent and Colorimetric Chemosensor for Fluoride Ion[J]. Spectrochim Acta, Part A, 2018,200:307-312. doi: 10.1016/j.saa.2018.04.040

    15. [15]

      Lin Q, Yang Q P, Sun B. A Highly Selective and Sensitive Fluorescence Turn-On Fluoride Ion Sensor[J]. RSC Adv, 2015,5:11786-11790. doi: 10.1039/C4RA09624J

    16. [16]

      Kumar G G V, Kesavan M P, Sivaraman G. Colorimetric and NIR Fluorescence Receptors for F- Ion Detection in Aqueous Condition and Its Live Cell Imaging[J]. Sens Actuators, B, 2018,255:3194-3206. doi: 10.1016/j.snb.2017.09.145

    17. [17]

      Wang R, Ma Y S, Zhao J F. Novel Hydroxyl-Substituted Perylene-3, 4, 9, 10-Tetracarboxylic Acid Diimides for Selective Recognition of Fluoride[J]. Sens Actuators, B, 2018,260:719-726. doi: 10.1016/j.snb.2017.12.171

    18. [18]

      Ashokkumar P, Ramakrishnan V T, Ramamurthy P. Fluorescence Spectroscopic Evidence for Hydrogen Bonding and Deprotonation Equilibrium Between Fluoride and a Thiourea Derivative[J]. Chem Eur J, 2010,44(16):13271-13277.  

    19. [19]

      Mahapatra A K, Karmakar P, Roy J. Colorimetric and Ratiometric Fluorescent Chemosensor for Fluoride Ions Based on Phenanthroimidazole(PI):Spectroscopic, NMR and Density Functional Studies[J]. RSC Adv, 2015,47(5):37935-37942.

    20. [20]

      Wu Y C, You J Y, Jiang K. Colorimetric and Ratiometric Fluorescent Sensor for F- Based on Benzimidazole-Naphthalene Conjugate:Reversible and Reusable Study & Design of Logic Gate Function[J]. Dyes Pigm, 2017,140:47-55. doi: 10.1016/j.dyepig.2017.01.025

    21. [21]

      Wu Y C, Huo J P, Cao L. Design and Application of Tri-Benzimidazolyl Star-Shape Molecules as Fluorescent Chemosensors for the Fast-Response Detection of Fluoride Ion[J]. Sens Actuators, B, 2016,237:865-875. doi: 10.1016/j.snb.2016.07.028

    22. [22]

      Singh H, Bhargava G, Kumar S. Microstructural (Self-assembly) and Optical Based Discrimination of Hg2+, CN- and Hg(CN)2 Ion-Pair; Hg2+ Promoted-ESIPT Assisted Guanylation of Thiourea[J]. Sens Actuators, B, 2018,272:43-52. doi: 10.1016/j.snb.2018.05.104

    23. [23]

      Wang S X, Meng X M, Zhu M Z. A Naked-eye Rhodamine-Based Fluorescent Probe for Fe(Ⅲ) and Its Application in Living Cells[J]. Tetrahedron Lett, 2011,52(22):2840-2843. doi: 10.1016/j.tetlet.2011.03.104

    24. [24]

      Bera R K, Raj C R. Naked Eye Sensing of Melamine Using Rationally Tailored Gold Nanoparticles:Hydrogen-Bonding and Charge-Transfer Recognition[J]. Analyst, 2011,136(8):1644-1648. doi: 10.1039/c0an00870b

    25. [25]

      Bao Y, Liu B, Wang H. A "Naked Eye" and Ratiometric Fluorescent Chemosensor for Rapid Detection of F- Based on Combination of Desilylation Reaction and Excited-State Proton Transfer[J]. Chem Commun, 2011,47(13):3957-3959. doi: 10.1039/c1cc00034a

    26. [26]

      Zhou X, Yan W, Zhao T. Rhodamine Based Derivative and Its Zinc Complex:Synthesis and Recognition Behavior Toward Hg(Ⅱ)[J]. Tetrahedron, 2013,69(46):9535-9539. doi: 10.1016/j.tet.2013.09.049

    27. [27]

      Kim K B, Kim H, Song E J. A Cap-Type Schiff Base Acting as a Fluorescence Sensor for Zinc(Ⅱ) and a Colorimetric Sensor for Iron(Ⅱ), Copper(Ⅱ), and Zinc(Ⅱ) in Aqueous Media[J]. Dalton Trans, 2013,42(47):16569-16577. doi: 10.1039/c3dt51916c

    28. [28]

      Shyamaprosad G, Maity S, Das A K. Remarkable ESIPT Induced NIR Emission by a Selective Colorimetric Dibenzimidazolo Diimine Sensor for Acetate[J]. Tetrahedron Lett, 2013,54(38):5232-5235. doi: 10.1016/j.tetlet.2013.07.078

    29. [29]

      Gong Y N, Lu T B. Fast Detection of Oxygen by the Naked Eye Using a Stable Metal-Organic Framework Containing Methyl Viologen Cations[J]. Chem Commun, 2013,49(70):7711-7713. doi: 10.1039/c3cc42268b

    30. [30]

      Zhu J, Yang X, Zhang L. A Visible Multi-Digit DNA Keypad Lock Based on Split G-Quadruplex DNAzyme and Silver Microspheres[J]. Chem Commun, 2013,49(48):5459-5461. doi: 10.1039/c3cc42028k

    31. [31]

      Pandurangan K, Kitchen J A, Gunnlaugsson T. Colorimetric Naked-eye' Sensing of Anions Using a Thiosemicarbazide Receptor:A Case Study of Recognition Through Hydrogen Bonding Versus Deprotonation[J]. Tetrahedron Lett, 2013,54(22):2770-2775. doi: 10.1016/j.tetlet.2013.02.107

    32. [32]

      Vinithra G, Suganya S, Velmathi S. Naked Eye Sensing of Anions Using Thiourea Based Chemosensors with Real Time Application[J]. Tetrahedron Lett, 2013,54(41):5612-5615. doi: 10.1016/j.tetlet.2013.08.005

    33. [33]

      Batista R M F, Oliveira E, Costa S P G. Cyanide and Fluoride Colorimetric Sensing by Novel Imidazo-Anthraquinones Functionalized with Indole and Carbazole[J]. Supramol Chem, 2014,26(2):71-80. doi: 10.1080/10610278.2013.824082

    34. [34]

      Ding L, Wu M J, Li Y R. New Fluoro- and Chromogenic Chemosensors for the Dual-channel Detection of Hg2+ and F-[J]. Tetrahedron Lett, 2014,55(34):4711-4715. doi: 10.1016/j.tetlet.2014.06.094

    35. [35]

      Satheshkumar A, El-Mossalamy E H, Manivannan R. Anion Induced Azo-Hydrazone Tautomerism for the Selective Colorimetric Sensing of Fluoride Ion[J]. Spectrochim Acta, Part A, 2014,128:798-805. doi: 10.1016/j.saa.2014.02.200

    36. [36]

      Parthiban C, Elango K P. Amino-Naphthoquinone and Its Metal Chelates for Selective Sensing of Fluoride Ions[J]. Sens Actuators, B, 2015,215:544-552. doi: 10.1016/j.snb.2015.03.105

    37. [37]

      Liu X M, Li Y P, Zhang Y H. Ratiometric Fluorescence Detection of Fluoride Ion by Indole-Based Receptor[J]. Talanta, 2015,131:597-602. doi: 10.1016/j.talanta.2014.08.017

    38. [38]

      Yang X F, Zheng L Y, Xie L J. Colorimetric and On-Off Fluorescent Chemosensor for Fluoride Ion Based on Diketopyrrolopyrrole[J]. Sens Actuators B, 2015,207:9-24. doi: 10.1016/j.snb.2014.10.095

    39. [39]

      Choi Y W, Lee J J, You G R. Chromogenic Naked-Eye Detection of Copper Ion and Fluoride[J]. RSC Adv, 2015,5(105):86463-86472. doi: 10.1039/C5RA16301C

    40. [40]

      Yeung M C L, Yam V W W. Luminescent Cation Sensors:From Host-Guest Chemistry, Supramolecular Chemistry to Reaction-Based Mechanisms[J]. Chem Soc Rev, 2015,44(13):4192-4202. doi: 10.1039/C4CS00391H

    41. [41]

      Lee H, Lee S S. Thiaoxaaza-Macrocyclic Chromoionphores as Mercury(Ⅱ) Sensors:Synthesis and Color Modulation[J]. Org Lett, 2009,11(6):1393-1396. doi: 10.1021/ol900241p

    42. [42]

      Suganya S, Velmathi S. Simple Azo-Based Salicylaldimine as Colorimetric and Fluorescent Probe for Detecting Anions in Semi-aqueous Medium[J]. J Mol Recognit, 2013,26(6):259-267. doi: 10.1002/jmr.2268

    43. [43]

      Hamid K, Khatereh R. Naked-Eye Detection of Inorganic Fluoride in Aqueous Media Using a New Azo-Azomethine Colorimetric Receptor Enhanced by Electron Withdrawing Groups[J]. RSC Adv, 2014,4(2):1032-1038. doi: 10.1039/C3RA42709A

    44. [44]

      Udhayakumari D, Velmathi S. Azo Linked Thiourea Based Effective Dual Sensor and Its Real Samples Application in Aqueous Medium[J]. Sens Actuators, B, 2015,209:462-469. doi: 10.1016/j.snb.2014.11.139

    45. [45]

      Simon D, Kannapiran R K. A Symmetrical Luminol Based Azo Derivative for Trimodal Ratiometric Hg2+ Sensing and Its Application to Bioimaging in Living Cells[J]. J Photochem Photobiol A, 2018,364:773-786. doi: 10.1016/j.jphotochem.2018.07.013

    46. [46]

      Lee K H, Lee H Y, Lee D H. Fluoride-Selective Chromogenic Sensors Based on Azophenol[J]. Terahedron Lett, 2001,42(32):5447-5449. doi: 10.1016/S0040-4039(01)01011-5

    47. [47]

      SONG Xiumei, FENG Zongcai, WANG Zhaoyang. Synthesis, Characterization and Photochromic Properties of D-π-A Azobenzene Derivatives[J]. J Funct Mater, 2015,46(9):09114-09119.

    48. [48]

      SONG Xiumei, FENG Zongcai, WANG Yuechuan. Synthesis and Photoisomerization of Film Containing 2, 4, 2'-Trihydroxyazobenzene[J]. Polym Mater Sci Eng, 2014,30(6):38-41.  

    49. [49]

      Niu H, Shu Q H, Jin S H. A Simple Ratiometric and Colorimetric Chemosensor for the Selective Detection of Fluoride in DMSO Buffered Solution[J]. Spectrochim Acta, Part A, 2016,153:194-198. doi: 10.1016/j.saa.2015.08.030

    50. [50]

      Sarkar A, Bhattacharyya S, Mukherjee A. Colorimetric Detection of Fluoride Ions by Anthraimidazoledione Based Sensors in the Presence of Cu(Ⅱ) Ions[J]. Dalton Trans, 2016,45:1166-1175. doi: 10.1039/C5DT03209A

    51. [51]

      Gupta N, Singhal D, Singh A K. Highly Selective Colorimetric and Reversible Fluorometric Turn-Off Sensors Based on the Pyrimidine Derivative:Mimicking Logic Gate Operation and Potential Applications[J]. New J Chem, 2016,40:641-650. doi: 10.1039/C5NJ02118A

  • 加载中
    1. [1]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    18. [18]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(6)
  • Abstract views(429)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return