Citation: SHI Lei, YANG Wencong, SHEN Qi, YIN Wei, HUO Zhaohui, SI Liping, LIU Haiyang. Iron Corrole Complexes: DNA-Binding and Anti-tumor Activity[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1376-1386. doi: 10.11944/j.issn.1000-0518.2019.12.190066 shu

Iron Corrole Complexes: DNA-Binding and Anti-tumor Activity

  • Corresponding author: SHI Lei, shil@gdei.edu.cn
  • Received Date: 14 March 2019
    Revised Date: 23 May 2019
    Accepted Date: 25 June 2019

    Fund Project: the Open Fund Project of Foshan University 2018the Innovation and Strong School Funding from Guangdong University of Education-Foundation for Distinguished Young Talents in Higher Education of Guangdong 2016KQNCX112Supported by the Higher Education Teaching Reform Project in Guangdong Province(2018), the Open Fund Project of Foshan University(2018), the Special Funds for Guangdong University Students′ Climbing Plan, College Students Innovation and Entrepreneurship Training Program, the Teaching Quality and Teaching Reform in Guangdong Second Normal University(2018), and the Innovation and Strong School Funding from Guangdong University of Education-Foundation for Distinguished Young Talents in Higher Education of Guangdong(No.2016KQNCX112)the Higher Education Teaching Reform Project in Guangdong Province 2018the Teaching Quality and Teaching Reform in Guangdong Second Normal University 2018

Figures(11)

  • 10-(4-Phenothiazine)-5, 15-bis(pentafluorophenyl)corrolatoiron (2-Fe) was synthesized. Complex 2-Fe displays high cytotoxic activity against human lung adenocarcinoma (A549) cell lines. Flow cytometry detected 2-Fe arrested the cell cycle in the S and G2 phase in the presence of H2O2 and apoptotic rate was 63.76%. Hoechst-33342 staining showed considerable morphological changes in nuclear chromatin and mitochondrial transmembrane potential dropped respectively. Complex 2-Fe could interact with DNA via an outside binding mode and trigger 1O2 generation.
  • 加载中
    1. [1]

      Liu H Y, Mahmood M H R, Qiu S X. Recent Developments in Manganese Corrole Chemistry[J]. Coord Chem Rev, 2013,267:1306-1333.  

    2. [2]

      Aviv-Harel I, Gross Z. Coordination Chemistry of Corroles with Focus on Main Group Elements[J]. Coord Chem Rev, 2011,255:717-736. doi: 10.1016/j.ccr.2010.09.013

    3. [3]

      Aviv I, Gross Z. Corrole-based Applications[J]. Chem Commun, 2007:1987-1999.

    4. [4]

      Aviezer D, Cotton S, David M. Porphyrin Analogues as Novel Antagonists of Fibroblast Growth Factor and Vascular Endothelial Growth Factor Receptor Binding that Inhibit Endothelial Cell Proliferation, Tumor Progression, and Metastasis[J]. Cancer Res, 2000,60:2973-2980.  

    5. [5]

      Chang C K, Kong P W, Liu H Y. Synthesis and Photodynamic Activities of Modified Corrole Derivatives on Nasopharyngeal Carcinoma Cells[J]. Proc SPIE, 2006,6139:613915-1. doi: 10.1117/12.646328

    6. [6]

      Agadjanian H, Ma J, Rentsendorj A. Tumor Detection and Elimination by a Targeted Gallium Corrole[J]. Proc Natl Acad Sci, 2009,106:6105-6110. doi: 10.1073/pnas.0901531106

    7. [7]

      Fu B Q, Huang J, Ren L. Cationic Corrole Derivatives:A New Family of G-Quadruplex Inducing and Stabilizing Ligands[J]. Chem Commun, 2007:3624-3266.

    8. [8]

      Fu B Q, Zhang D, Weng X C. Cationic Metal-Corrole Complexes:Design, Synthesis, and Properties of Guanine-Quadruplex Stabilizers[J]. Chem Eur J, 2008,14:9431-9441. doi: 10.1002/chem.200800835

    9. [9]

      Ma H, Zhang M, Zhang D. Pyridyl-Substituted Corrole Isomers:Synthesis and Their Regulation to G-Quadruplex Structures[J]. Chem Asian J, 2010,5:114-122. doi: 10.1002/asia.200900270

    10. [10]

      Qi L, Ding Y Q. Potential Antitumor Mechanisms of Phenothiazine Drugs[J]. Sci China Life Sci, 2013,56:1020-1027. doi: 10.1007/s11427-013-4561-6

    11. [11]

      Molnar J, Sakaqami H, Motohashi N. Diverse Biological Activities Displayed by Phenothiazines, Benzo[A]phenothiazines and Benz[C]acridins(Review)[J]. Anticancer Res, 1993, 13: 1019-1025.

    12. [12]

      Shi L, Liu H Y, Peng K M. Synthesis of Phenothiazine-corrole Dyads:The Enhanced DNA Photocleavage Properties[J]. Tetrahedron Lett, 2010,51:3439-3442. doi: 10.1016/j.tetlet.2010.04.112

    13. [13]

      SHI Lei, JIANG Huanfeng, YIN Wei. Synthesis, Fluorescence and DNA Photocleavage Activity of Phenothiazine-Corrole Gallium(Ⅲ) Complexes[J]. Acta Phys Chim, 2012,28(2):465-469.  

    14. [14]

      SHI Lei, YANG Wencong, ZENG Shuying. DNA-Binding and Anti-tumor Activities of Cobalt Corrole Complexes[J]. Chem J Chinese Univ, 2016,37:1059-1068.  

    15. [15]

      Zhang Y, Wen J Y, Mahmood M H R. DNA/HSA Interaction and Nuclease Activity of an Iron(Ⅲ) Amphiphilic Sulfonated Corrole[J]. Luminescence, 2015,30:1045-1054. doi: 10.1002/bio.2857

    16. [16]

      Mahammed A, Gross Z. Iron and Manganese Corroles are Potent Catalysts for the Decomposition of Peroxynitrite[J]. Angew Chem Int Ed, 2006,45:6544-6547. doi: 10.1002/anie.200601399

    17. [17]

      Haber A, Mahammed A, Fuhrman B. Amphiphilic/Bipolar Metallocorroles that Catalyze the Decomposition of Reactive Oxygen and Nitrogen Species, Rescue Lipoproteins from Oxidative Damage, and Attenuate Atherosclerosis in Mice[J]. Angew Chem Int Ed, 2008,47:7896-7900. doi: 10.1002/anie.200801149

    18. [18]

      Zhong Y Q, Md.Hossain S, Chen Y. A Comparative Study of Electrocatalytic Hydrogen Evolution by Iron Complexes of Corrole and Porphyrin from Acetic Acid and Water[J]. Transition Met Chem, 2019,44:399-406. doi: 10.1007/s11243-019-00307-5

    19. [19]

      Zou H B, Yang H, Liu Z Y. Iron(Ⅳ)-Corrole Catalyzed Stereoselective Olefination of Aldehydes with Ethyl Diazoacetate[J]. Organometallics, 2015,34:2791-2795. doi: 10.1021/acs.organomet.5b00069

    20. [20]

      Nakano K, Kobayashi K, Ohkawara T. Copolymerization of Epoxides with Carbon Dioxide Catalyzed by Iron-Corrole Complexes:Synthesis of a Crystalline Copolymer[J]. J Am Chem Soc, 2013,135:8456-8459. doi: 10.1021/ja4028633

    21. [21]

      Lepecq J B, Paoletti C. A Fluorescent Complex Between Ethidium Bromide and Nucleic Acids. Physical-Chemical Characterization[J]. J Mol Biol, 1967,27:87-106. doi: 10.1016/0022-2836(67)90353-1

    22. [22]

      Sun Y, Hou Y J, Zhou Q X. Dinuclear Cu(Ⅱ) Hypocrellin B Complexes with Enhanced Photonuclease Activity[J]. Inorg Chem, 2010,49:10108-10116. doi: 10.1021/ic101391x

    23. [23]

      Satyanarayana S, Dabrowiak J C, Chaires J B. Tris(phenanthroline)ruthenium(Ⅱ) Enantiomer Interactions with DNA:Mode and Specificity of Binding[J]. Biochemistry, 1993,32:2573-2584. doi: 10.1021/bi00061a015

    24. [24]

      Banmeyer I, Marchand C, Verhaeghe C. Overexpression of Human Peroxiredoxin 5 in Subcellular Compartments of Chinese Hamster Ovary Cells:Effects on Cytotoxicity and DNA Damage Caused by Peroxides[J]. Free Radical Biol Med, 2004,36:65-77. doi: 10.1016/j.freeradbiomed.2003.10.019

    25. [25]

      Ghosh A. Electronic Structure of Corrole Derivatives:Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations[J]. Chem Rev, 2017,117:3798-3881. doi: 10.1021/acs.chemrev.6b00590

    26. [26]

      Xiang J Y, Xia X S, Jiang Y. Apoptosis of Ovarian Cancer Cells Induced by Methylene Blue-Mediated Sonodynamic Action[J]. Ultrasonics, 2011,51:390-395. doi: 10.1016/j.ultras.2010.11.005

    27. [27]

      Domingo-Gil E, Esteban M. Role of Mitochondria in Apoptosis Induced by the 2-5A System and Mechanisms Involved[J]. Apoptosis, 2006,11:725-738. doi: 10.1007/s10495-006-5541-0

    28. [28]

      Zhao C Q, Zhang Y H, Jiang S D. Both Endoplasmic Reticulum and Mitochondria are Involved in Disc Cell Apoptosis and Intervertebral Disc Degeneration in Rats[J]. AGE, 2010,32:161-177. doi: 10.1007/s11357-009-9121-4

    29. [29]

      Green D R, Reed J C. Mitochondria and Apoptosis[J]. Science, 1998,28:1309-1312.  

    30. [30]

      Yun-Kai L V, Li P, Jiao M L. Fluorescence Quenching Study of Moxifloxacin Interaction with Calf Thymus DNA[J]. Turk J Chem, 2014,38:202-209. doi: 10.3906/kim-1301-28

    31. [31]

      Lakowicz J R, Webber G. Quenching of Fluorescence by Oxygen. A Probe for Structural Fluctuations in Macromoleculest[J]. Biochemisry, 1973,12:4161-4170. doi: 10.1021/bi00745a020

    32. [32]

      Sun Y T, Peng T T, Zhao L. Studies of Interaction Between Two Alkaloids and Double Helix DNA[J]. J Lumin, 2014,156:108-115. doi: 10.1016/j.jlumin.2014.07.014

    33. [33]

      Pasternack R F, Gibbs E J, Villafranca J J. Interactions of Porphyrins with Nucleic Acids[J]. Biochemistry, 1983,22:2406-2414. doi: 10.1021/bi00279a016

    34. [34]

      Wolfe A, Shimer G H, Meehan T. Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA[J]. Biochemistry, 1987,26:6392-6396. doi: 10.1021/bi00394a013

    35. [35]

      Ivanov V I, Minchenkova L E, Schyolkina A K. Different Conformations of Double-stranded Nucleic Acid in Solution as Revealed by Circular Dichroism[J]. Biopolymers, 1973,12:89-110. doi: 10.1002/bip.1973.360120109

    36. [36]

      Nordén B, Tjerneld F. Structure of Methylene Blue-DNA Complexes Studied by Linear and Circular Dichroism Spectroscopy[J]. Biopolymers, 1982,21:1713-1734. doi: 10.1002/bip.360210904

    37. [37]

      Satyanarayana S, Dabrowiak J C, Chaires J B. Neither Δ-nor Λ-Tris(phenanthroline)ruthenium(Ⅱ) Binds to DNA by Classical Intercalation[J]. Biochemistry, 1992,31:9319-9324. doi: 10.1021/bi00154a001

    38. [38]

      Ji L N, Zhou X H, Liu J G. Shape and Enantioselective Interaction of Ru(Ⅱ)/Co(Ⅲ) Polypyridyl Complexes with DNA[J]. Coord Chem Rev, 2001,216:513-536.

    39. [39]

      Inclán M, Albelda M T, Frías J C. Modulation of DNA Binding by Reversible Metal-Controlled Molecular Reorganizations of Scorpiand-Like Ligands[J]. J Am Chem Soc, 2012,134:9644-9656. doi: 10.1021/ja300538s

    40. [40]

      Enko B, Borisov S M, Regensburger J. Singlet Oxygen-Induced Photodegradation of the Polymers and Dyes in Optical Sensing Materials and the Effect of Stabilizers on These Processes[J]. J Phys Chem A, 2013,117:8873-8882. doi: 10.1021/jp4046462

    41. [41]

      Bancirova M. Sodium Azide as a Specific Quencher of Singlet Oxygen During Chemiluminescent Detection by Luminol and Cypridina Luciferin Analogues[J]. Luminescence, 2011,26:685-688. doi: 10.1002/bio.1296

    42. [42]

      Lee J W, Miyawaki H, Bobst E V. Improved Functional Recovery of Ischemic Rat Hearts Due to Singlet Oxygen Scavengers Histidine and Carnosine[J]. J Mol Cell Cardiol, 1999,31:113-121. doi: 10.1006/jmcc.1998.0850

    43. [43]

      Stoyanovsky D A, Melnikov Z, Cederbaum A I. ESR and HPLC-EC Analysis of the Interaction of Hydroxyl Radical with DMSO:Rapid Reduction and Quantification of POBN and PBN Nitroxides[J]. Anal Chem, 1999,71:715-721. doi: 10.1021/ac980657r

    44. [44]

      Staehelln J, Hoign J. Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactionst[J]. Environ Sci Technol, 1985,19:1206-1213. doi: 10.1021/es00142a012

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    5. [5]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    6. [6]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    9. [9]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    10. [10]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    14. [14]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    15. [15]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    16. [16]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    17. [17]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    18. [18]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    19. [19]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(5)
  • Abstract views(621)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return