Iron Corrole Complexes: DNA-Binding and Anti-tumor Activity
- Corresponding author: SHI Lei, shil@gdei.edu.cn
Citation:
SHI Lei, YANG Wencong, SHEN Qi, YIN Wei, HUO Zhaohui, SI Liping, LIU Haiyang. Iron Corrole Complexes: DNA-Binding and Anti-tumor Activity[J]. Chinese Journal of Applied Chemistry,
;2019, 36(12): 1376-1386.
doi:
10.11944/j.issn.1000-0518.2019.12.190066
Liu H Y, Mahmood M H R, Qiu S X. Recent Developments in Manganese Corrole Chemistry[J]. Coord Chem Rev, 2013,267:1306-1333.
Aviv-Harel I, Gross Z. Coordination Chemistry of Corroles with Focus on Main Group Elements[J]. Coord Chem Rev, 2011,255:717-736. doi: 10.1016/j.ccr.2010.09.013
Aviv I, Gross Z. Corrole-based Applications[J]. Chem Commun, 2007:1987-1999.
Aviezer D, Cotton S, David M. Porphyrin Analogues as Novel Antagonists of Fibroblast Growth Factor and Vascular Endothelial Growth Factor Receptor Binding that Inhibit Endothelial Cell Proliferation, Tumor Progression, and Metastasis[J]. Cancer Res, 2000,60:2973-2980.
Chang C K, Kong P W, Liu H Y. Synthesis and Photodynamic Activities of Modified Corrole Derivatives on Nasopharyngeal Carcinoma Cells[J]. Proc SPIE, 2006,6139:613915-1. doi: 10.1117/12.646328
Agadjanian H, Ma J, Rentsendorj A. Tumor Detection and Elimination by a Targeted Gallium Corrole[J]. Proc Natl Acad Sci, 2009,106:6105-6110. doi: 10.1073/pnas.0901531106
Fu B Q, Huang J, Ren L. Cationic Corrole Derivatives:A New Family of G-Quadruplex Inducing and Stabilizing Ligands[J]. Chem Commun, 2007:3624-3266.
Fu B Q, Zhang D, Weng X C. Cationic Metal-Corrole Complexes:Design, Synthesis, and Properties of Guanine-Quadruplex Stabilizers[J]. Chem Eur J, 2008,14:9431-9441. doi: 10.1002/chem.200800835
Ma H, Zhang M, Zhang D. Pyridyl-Substituted Corrole Isomers:Synthesis and Their Regulation to G-Quadruplex Structures[J]. Chem Asian J, 2010,5:114-122. doi: 10.1002/asia.200900270
Qi L, Ding Y Q. Potential Antitumor Mechanisms of Phenothiazine Drugs[J]. Sci China Life Sci, 2013,56:1020-1027. doi: 10.1007/s11427-013-4561-6
Molnar J, Sakaqami H, Motohashi N. Diverse Biological Activities Displayed by Phenothiazines, Benzo[A]phenothiazines and Benz[C]acridins(Review)[J]. Anticancer Res, 1993, 13: 1019-1025.
Shi L, Liu H Y, Peng K M. Synthesis of Phenothiazine-corrole Dyads:The Enhanced DNA Photocleavage Properties[J]. Tetrahedron Lett, 2010,51:3439-3442. doi: 10.1016/j.tetlet.2010.04.112
SHI Lei, JIANG Huanfeng, YIN Wei. Synthesis, Fluorescence and DNA Photocleavage Activity of Phenothiazine-Corrole Gallium(Ⅲ) Complexes[J]. Acta Phys Chim, 2012,28(2):465-469.
SHI Lei, YANG Wencong, ZENG Shuying. DNA-Binding and Anti-tumor Activities of Cobalt Corrole Complexes[J]. Chem J Chinese Univ, 2016,37:1059-1068.
Zhang Y, Wen J Y, Mahmood M H R. DNA/HSA Interaction and Nuclease Activity of an Iron(Ⅲ) Amphiphilic Sulfonated Corrole[J]. Luminescence, 2015,30:1045-1054. doi: 10.1002/bio.2857
Mahammed A, Gross Z. Iron and Manganese Corroles are Potent Catalysts for the Decomposition of Peroxynitrite[J]. Angew Chem Int Ed, 2006,45:6544-6547. doi: 10.1002/anie.200601399
Haber A, Mahammed A, Fuhrman B. Amphiphilic/Bipolar Metallocorroles that Catalyze the Decomposition of Reactive Oxygen and Nitrogen Species, Rescue Lipoproteins from Oxidative Damage, and Attenuate Atherosclerosis in Mice[J]. Angew Chem Int Ed, 2008,47:7896-7900. doi: 10.1002/anie.200801149
Zhong Y Q, Md.Hossain S, Chen Y. A Comparative Study of Electrocatalytic Hydrogen Evolution by Iron Complexes of Corrole and Porphyrin from Acetic Acid and Water[J]. Transition Met Chem, 2019,44:399-406. doi: 10.1007/s11243-019-00307-5
Zou H B, Yang H, Liu Z Y. Iron(Ⅳ)-Corrole Catalyzed Stereoselective Olefination of Aldehydes with Ethyl Diazoacetate[J]. Organometallics, 2015,34:2791-2795. doi: 10.1021/acs.organomet.5b00069
Nakano K, Kobayashi K, Ohkawara T. Copolymerization of Epoxides with Carbon Dioxide Catalyzed by Iron-Corrole Complexes:Synthesis of a Crystalline Copolymer[J]. J Am Chem Soc, 2013,135:8456-8459. doi: 10.1021/ja4028633
Lepecq J B, Paoletti C. A Fluorescent Complex Between Ethidium Bromide and Nucleic Acids. Physical-Chemical Characterization[J]. J Mol Biol, 1967,27:87-106. doi: 10.1016/0022-2836(67)90353-1
Sun Y, Hou Y J, Zhou Q X. Dinuclear Cu(Ⅱ) Hypocrellin B Complexes with Enhanced Photonuclease Activity[J]. Inorg Chem, 2010,49:10108-10116. doi: 10.1021/ic101391x
Satyanarayana S, Dabrowiak J C, Chaires J B. Tris(phenanthroline)ruthenium(Ⅱ) Enantiomer Interactions with DNA:Mode and Specificity of Binding[J]. Biochemistry, 1993,32:2573-2584. doi: 10.1021/bi00061a015
Banmeyer I, Marchand C, Verhaeghe C. Overexpression of Human Peroxiredoxin 5 in Subcellular Compartments of Chinese Hamster Ovary Cells:Effects on Cytotoxicity and DNA Damage Caused by Peroxides[J]. Free Radical Biol Med, 2004,36:65-77. doi: 10.1016/j.freeradbiomed.2003.10.019
Ghosh A. Electronic Structure of Corrole Derivatives:Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations[J]. Chem Rev, 2017,117:3798-3881. doi: 10.1021/acs.chemrev.6b00590
Xiang J Y, Xia X S, Jiang Y. Apoptosis of Ovarian Cancer Cells Induced by Methylene Blue-Mediated Sonodynamic Action[J]. Ultrasonics, 2011,51:390-395. doi: 10.1016/j.ultras.2010.11.005
Domingo-Gil E, Esteban M. Role of Mitochondria in Apoptosis Induced by the 2-5A System and Mechanisms Involved[J]. Apoptosis, 2006,11:725-738. doi: 10.1007/s10495-006-5541-0
Zhao C Q, Zhang Y H, Jiang S D. Both Endoplasmic Reticulum and Mitochondria are Involved in Disc Cell Apoptosis and Intervertebral Disc Degeneration in Rats[J]. AGE, 2010,32:161-177. doi: 10.1007/s11357-009-9121-4
Green D R, Reed J C. Mitochondria and Apoptosis[J]. Science, 1998,28:1309-1312.
Yun-Kai L V, Li P, Jiao M L. Fluorescence Quenching Study of Moxifloxacin Interaction with Calf Thymus DNA[J]. Turk J Chem, 2014,38:202-209. doi: 10.3906/kim-1301-28
Lakowicz J R, Webber G. Quenching of Fluorescence by Oxygen. A Probe for Structural Fluctuations in Macromoleculest[J]. Biochemisry, 1973,12:4161-4170. doi: 10.1021/bi00745a020
Sun Y T, Peng T T, Zhao L. Studies of Interaction Between Two Alkaloids and Double Helix DNA[J]. J Lumin, 2014,156:108-115. doi: 10.1016/j.jlumin.2014.07.014
Pasternack R F, Gibbs E J, Villafranca J J. Interactions of Porphyrins with Nucleic Acids[J]. Biochemistry, 1983,22:2406-2414. doi: 10.1021/bi00279a016
Wolfe A, Shimer G H, Meehan T. Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA[J]. Biochemistry, 1987,26:6392-6396. doi: 10.1021/bi00394a013
Ivanov V I, Minchenkova L E, Schyolkina A K. Different Conformations of Double-stranded Nucleic Acid in Solution as Revealed by Circular Dichroism[J]. Biopolymers, 1973,12:89-110. doi: 10.1002/bip.1973.360120109
Nordén B, Tjerneld F. Structure of Methylene Blue-DNA Complexes Studied by Linear and Circular Dichroism Spectroscopy[J]. Biopolymers, 1982,21:1713-1734. doi: 10.1002/bip.360210904
Satyanarayana S, Dabrowiak J C, Chaires J B. Neither Δ-nor Λ-Tris(phenanthroline)ruthenium(Ⅱ) Binds to DNA by Classical Intercalation[J]. Biochemistry, 1992,31:9319-9324. doi: 10.1021/bi00154a001
Ji L N, Zhou X H, Liu J G. Shape and Enantioselective Interaction of Ru(Ⅱ)/Co(Ⅲ) Polypyridyl Complexes with DNA[J]. Coord Chem Rev, 2001,216:513-536.
Inclán M, Albelda M T, Frías J C. Modulation of DNA Binding by Reversible Metal-Controlled Molecular Reorganizations of Scorpiand-Like Ligands[J]. J Am Chem Soc, 2012,134:9644-9656. doi: 10.1021/ja300538s
Enko B, Borisov S M, Regensburger J. Singlet Oxygen-Induced Photodegradation of the Polymers and Dyes in Optical Sensing Materials and the Effect of Stabilizers on These Processes[J]. J Phys Chem A, 2013,117:8873-8882. doi: 10.1021/jp4046462
Bancirova M. Sodium Azide as a Specific Quencher of Singlet Oxygen During Chemiluminescent Detection by Luminol and Cypridina Luciferin Analogues[J]. Luminescence, 2011,26:685-688. doi: 10.1002/bio.1296
Lee J W, Miyawaki H, Bobst E V. Improved Functional Recovery of Ischemic Rat Hearts Due to Singlet Oxygen Scavengers Histidine and Carnosine[J]. J Mol Cell Cardiol, 1999,31:113-121. doi: 10.1006/jmcc.1998.0850
Stoyanovsky D A, Melnikov Z, Cederbaum A I. ESR and HPLC-EC Analysis of the Interaction of Hydroxyl Radical with DMSO:Rapid Reduction and Quantification of POBN and PBN Nitroxides[J]. Anal Chem, 1999,71:715-721. doi: 10.1021/ac980657r
Staehelln J, Hoign J. Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactionst[J]. Environ Sci Technol, 1985,19:1206-1213. doi: 10.1021/es00142a012
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
Jialiang XU , Jiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Lane 1:DNA; lane 2:DNA+2-Fe(30 μmol/L); lane 3:DNA+H2O2 (20 mmol/L); lane 4-11:DNA+H2O2(20 mmol/L)+1, 3, 5, 10, 15, 20, 25, 30 μmol/L 2-Fe, respectively
Lane 1:DNA; lane 2:DNA+2-Fe; lane 3:DNA+H2O2; lane 4:DNA+H2O2+2-Fe; lane 5:DNA+2-Fe+H2O2+DABCO(10 mmol/L); lane 6:DNA+2-Fe+H2O2+NaN3(10 mmol/L); lane 7:DNA+2-Fe+H2O2+L-histidine(50 mmol/L); lane 8:DNA+2-Fe+H2O2+DMSO(2 μL); lane 8:DNA+2-Fe+H2O2+tert-BuOH(2 μL), c(2-Fe)=30 μmol/L, c(H2O2)=20 mmol/L