Citation: YU Hang, WANG Xizi, ZHU Xuya, LIU Xiaqing, YANG Hui, LI Fengxiang. Research Progress on Metal Organic Framework Material(MIL-101) and Its Functionalized Modification Materials for Environmental Pollutant Removal[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1221-1236. doi: 10.11944/j.issn.1000-0518.2019.11.190146 shu

Research Progress on Metal Organic Framework Material(MIL-101) and Its Functionalized Modification Materials for Environmental Pollutant Removal

  • Corresponding author: LI Fengxiang, lifx@nankai.edu.cn
  • Received Date: 20 May 2019
    Revised Date: 26 June 2019
    Accepted Date: 12 July 2019

    Fund Project: the National Natural Science Foundation of China 31570504the National College Students Innovation and Entrepreneurship Training Program 201810055108the Tianjin Natural Science Foundation 16JCYBJC22900Supported by the National Natural Science Foundation of China(No.31570504), the Tianjin Natural Science Foundation(No.16JCYBJC22900), and the National College Students Innovation and Entrepreneurship Training Program(No.201810055108)

Figures(5)

  • The pollution issues of water and air in China currently become severe. Many pollutants that endanger people's health are urgently needed to be treated. As a kind of emerging porous material, the metal-organic framework has many applications in the treatment processes of pollutants. This paper introduces the structural information of chromium terephthalate metal organic framework material (MIL-101) and its functionally modified materials. The main synthesis methods of this material are summarized as well. The research progress of the application of this material in the environmental pollutant removal is analyzed, including the adsorption treatment of heavy metal ions, pesticides, antibiotics, organic dyes and iodide ions, etc. It also has the potential of monitoring pollutants and risk warning. This paper also points out some problems which are still pending.
  • 加载中
    1. [1]

      Yaghi O M, O Keeffe M, Ockwig N W. Reticular Synthesis and the Design of New Materials[J]. Nature, 2003,423(6941):705-714. doi: 10.1038/nature01650

    2. [2]

      Dhakshinamoorthy A, Garcia H. Catalysis by Metal Nanoparticles Embedded on Metal-Organic Frameworks[J]. Chem Soc Rev, 2012,41(15):5262-5284. doi: 10.1039/c2cs35047e

    3. [3]

      Nathaniel L R, Juergen E, Mohamed E. Hydrogen Storage in Microporous Metal-Organic Frameworks[J]. Science, 2003,300(5622):1127-1129. doi: 10.1126/science.1083440

    4. [4]

      ZHANG Pan, ZHOU Kui, Haemchuen Somboon. Progress of Metal Oxide and Metal-Organic Framework Composite Materials[J]. Chinese J Appl Chem, 2018,35(4):369-380.  

    5. [5]

      Yang Y, Yao H F, Xi F G. Amino-functionalized Zr(Ⅳ) Metal-Organic Framework as Bifunctional Acid-Base Catalyst for Knoevenagel Condensation[J]. J Mol Catal A, 2014,390:198-205. doi: 10.1016/j.molcata.2014.04.002

    6. [6]

      Ma S, Sun D, Simmons J M. Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake[J]. J Am Chem Soc, 2008,130(3):1012-1016. doi: 10.1021/ja0771639

    7. [7]

      Zhao Y P, Du Z Y, Yang H. A Microporous Manganese-Based Metal-Organic Framework for Gas Sorption and Separation[J]. J Mol Struct, 2014,1074:19-21. doi: 10.1016/j.molstruc.2014.05.033

    8. [8]

      Mishra P, Mekala S, Dreisbach F. Adsorption of CO2, CO, CH4 and N2 on a Zinc Based Metal Organic Framework[J]. Sep Purif Technol, 2012,94:124-130. doi: 10.1016/j.seppur.2011.09.041

    9. [9]

      Lei J, Qian R, Ling P. Design and Sensing Applications of Metal-Organic Framework Composites[J]. Trends Anal Chem, 2014,58:71-78. doi: 10.1016/j.trac.2014.02.012

    10. [10]

      Gaudin C, Cunha D, Ivanoff E. A Quantitative Structure Activity Relationship Approach to Probe the Influence of the Functionalization on the Drug Encapsulation of Porous Metal-Organic Frameworks[J]. Micropor Mesopor Mater, 2012,157:124-130. doi: 10.1016/j.micromeso.2011.06.011

    11. [11]

      Yaghi O M, Li H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels[J]. J Am Chem Soc, 1995,117(41):10401-10402. doi: 10.1021/ja00146a033

    12. [12]

      Stock N, Biswas S. Synthesis of Metal-Organic Frameworks(MOFs):Routes to Various MOF Topologies, Morphologies, and Composites[J]. J Am Chem Soc, 2012,112(2):933-969.  

    13. [13]

      Hallian L I, Eddaoudi M, O'Keeffe M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework[J]. Nature, 1999,402(6759):276-279. doi: 10.1038/46248

    14. [14]

      ZHU Quanfei. The Synthesis of Metal-Organic Frameworks MIL-101 and Its Application[D]. Hubei University, 2014(in Chinese).

    15. [15]

      HAN Yitong, LIU Min, LI Keyan. Preparation and Application of High Stability Metal-Organic Framework UiO-66[J]. Chinese J Appl Chem, 2016,33(4):367-378.  

    16. [16]

      CHEN Dandan, CHEN Deli, XU Chunhui. Research Progress on the Effect of Water Vapor for the Adsorption and Separation of Gas Mixture Using MOFs[J]. Guangzhou Chem, 2017,44(8):94-95, 126. doi: 10.3969/j.issn.1007-1865.2017.08.041

    17. [17]

      Chowdhury P, Bikkina C, Gumma S. Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101[J]. J Phys Chem, 2009,113(16):6616-6621.  

    18. [18]

      Férey G, Mellot-Draznieks C, Serre C. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005,309(5743):2040-2042. doi: 10.1126/science.1116275

    19. [19]

      Yang J, Zhao Q, Li J. Synthesis of Metal-Organic Framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and Its Hydrogen-Storage Behavior[J]. Micropor Mesopor Mater, 2010,130(1-3):174-179. doi: 10.1016/j.micromeso.2009.11.001

    20. [20]

      Latroche M, Surble S, Serre C. Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101[J]. Angew Chem Int Ed, 2006,45(48):8227-8231. doi: 10.1002/anie.200600105

    21. [21]

      Li Y W, Yang R T. Hydrogen Storage in Metal-Organic and Covalent-Organic Frameworks by Spillover[J]. AIChE J, 2008,54(1):269-279. doi: 10.1002/aic.11362

    22. [22]

      Hamon L, Serre C, Devic T. Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal-Organic Frameworks at Room Temperature[J]. J Am Chem Soc, 2009,131(25):8775-8777. doi: 10.1021/ja901587t

    23. [23]

      Jhung S H, Lee J H, Yoon J W. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability[J]. Adv Mater, 2007,19(1):121-124. doi: 10.1002/adma.200601604

    24. [24]

      Zhao Z, Li X, Huang S. Adsorption and Diffusion of Benzene on Chromium-Based Metal Organic Framework MIL-101 Synthesized by Microwave Irradiation[J]. Ind Eng Chem Res, 2011,50(4):2254-2261. doi: 10.1021/ie101414n

    25. [25]

      Llewellyn P L, Bourrelly S, Serre C. High Uptakes of CO2 and CH4 in Mesoporous Metal-Organic Frameworks MIL-100 and MIL-101[J]. Langmuir, 2008,24(14):7245-7250. doi: 10.1021/la800227x

    26. [26]

      Trung T K, Ramsahye N A, Trens P. Adsorption of C5-C9 Hydrocarbons in Microporous MOFs MIL-100(Cr) and MIL-101(Cr):A Manometric Study[J]. Micropor Mesopor Mater, 2010,134(1-3):134-140. doi: 10.1016/j.micromeso.2010.05.018

    27. [27]

      Yang K, Xue F, Sun Q. Adsorption of Volatile Organic Compounds by Metal-Organic Frameworks MOF-177[J]. J Environ Chem Eng, 2013,1(4):713-718. doi: 10.1016/j.jece.2013.07.005

    28. [28]

      DING Lin. Preparation of Modified and Calcined MIL-101 and Zr-MOFs Materials for the Adsorption of Heavy Metal Ions from Aqueous Solution[D]. Nanchang: Nanchang Hangkong University, 2016(in Chinese).

    29. [29]

      ZHANG Chunmei. Synthesis and Performance Study of MIL-101 Materials[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).

    30. [30]

      Hu T, Lv H, Shan S. Porous structured MIL-101 Synthesized with Different Mineralizers for Adsorptive Removal of Oxytetracycline from Aqueous Solution[J]. RSC Adv, 2016,6(77):73741-73747. doi: 10.1039/C6RA11684A

    31. [31]

      Kha N A, Hasan Z, Jhung S H. Adsorptive Removal of Hazardous Materials Using Metal-Organic Frameworks(MOFs):A Review[J]. J Hazard Mater, 2013,244(45):444-456.  

    32. [32]

      Minh T, Huynh T, Thu P. Comparative Study of Pb(Ⅱ) Adsorption onto MIL-101 and Fe-MIL-101 from Aqueous Solutions[J]. J Environ Chem Eng, 2018,4(6):4093-4102.

    33. [33]

      Luo X B, Ding L, Luo J M. Adsorptive Removal of Pb(Ⅱ) Ions from Aqueous Samples with Amino-Functionalization of Metal-Organic Frameworks MIL-101(Cr)[J]. J Chem Eng Data, 2015,6(60):1732-1743.

    34. [34]

      XU Yanli, YANG Hanbiao, LV Mengmeng. Effects of Various Factors on Adsorption of MIL-101(Cr) for Dyes in Aqueous Solutions[J]. CIESC J, 2015,66(10):4025-4031. doi: 10.11949/j.issn.0438-1157.20140942

    35. [35]

      Cao Y, Cheng J H, Chen Y C. Enhanced Adsorption Performance of MoS2 Nanosheet-Coated MIL-101 Hybrids for the Removal of Aqueous Rhodamine B[J]. J Colloid Interface Sci, 2017(504):39-47.  

    36. [36]

      Mao P, Qi B B, Liu Y. AgII doped MIL-101 and Its Adsorption of Iodine with High Speed in Solution[J]. J Solid State Chem, 2016(237):274-283.  

    37. [37]

      Liu R T, Chi L N, Wang X Z. Effective and Selective Adsorption of Phosphate from Aqueous Solution via Trivalent-Metals-Based Amino-MIL-101 MOFs[J]. Chem Eng J, 2019(357):159-168.  

    38. [38]

      Luo X B, Shen T T, Ding L. Novel Thymine-functionalized MIL-101 Prepared by Post-synthesis and Enhanced Removal of Hg2+ from Water[J]. J Hazard Mater, 2016(306):313-322.  

    39. [39]

      WANG Liang, TIAN Dan, LIU Anqi. Preparation of Graphene Oxide@MIL-101 Composite and Its Performance in Cr(Ⅵ) Removal from Aqueous Solution[J]. CIESC J, 2017,68(5):2105-2111.  

    40. [40]

      Hu T D, Jia Q M, He S C. Novel Functionalized Metal-Organic Framework MIL-101 Adsorbent for Capturing Oxytetracycline[J]. J Alloys Compd, 2017(727):114-122.  

    41. [41]

      YANG Qingxiang, ZHAO Qianqian, LI Yinping. Design of Fe3O4@SiO2@MIL-101(Cr) and Optimization of BPA Adsorption Ability[J]. J Chem Ind Eng, 2016,31(3):8-13. doi: 10.3969/j.issn.2095-476X.2016.03.002

    42. [42]

      HANG Gang, CHEN Yuzhen, JIANG Hailong. Metal-Organic Frameworks for Catalysis[J]. Acta Chim Sin, 2016,74(2):113-129.  

    43. [43]

      Minh Thanh H T, Tam Toan T T, Tuyen T N. Comparative Study of Pb(Ⅱ) Adsorption onto MIL-101 and Fe-MIL-101 from Aqueous Solutions[J]. J Environ Chem Eng, 2018,6(4):4093-4102. doi: 10.1016/j.jece.2018.06.021

    44. [44]

      Zhao Y, Liu F, Tan J. Preparation and Hydrogen Storage of Pd/MIL-101 Nanocomposites[J]. J Alloys Compd, 2019,772:186-192. doi: 10.1016/j.jallcom.2018.09.045

    45. [45]

      Jin J, Yang Z, Xiong W, Xu R. Cu and Co Nanoparticles co-doped MIL-101 as a Novel Adsorbent for Efficient Removal of Tetracycline from Aqueous Solutions[J]. Sci Total Environ, 2019,650:408-418. doi: 10.1016/j.scitotenv.2018.08.434

    46. [46]

      Wang T, Zhao P, Lu N. Facile Fabrication of Fe3O4/MIL-101(Cr) for Effective Removal of Acid Red 1 and Orange G from Aqueous Solution[J]. Chem Eng J, 2016,295:403-413. doi: 10.1016/j.cej.2016.03.016

    47. [47]

      Luo X P, Fu S Y, Du Y M. Adsorption of Methylene Blue and Malachite Green from Aqueous Solution by Sulfonic Acid Group Modified MIL-101[J]. Micropor Mesopor Mater, 2017,237:268-274. doi: 10.1016/j.micromeso.2016.09.032

    48. [48]

      Bao S Y, Li K, Ning P. Synthesis of Amino-functionalization Magnetic Multi-metal Organic Framework(Fe3O4/MIL-101(Al0.9Fe0.1)/NH2) for Efficient Removal of Methyl Orange from Aqueous Solution[J]. J Taiwan Inst Chem Eng, 2018,87:64-72. doi: 10.1016/j.jtice.2018.03.009

    49. [49]

      Wang Y K, Hong D Y, Chang J S. Selective Sulfoxidation of Aryl Sulfides by Coordinatively Unsaturated Metal Centers in Chromium Carboxylate MIL-101[J]. Appl Catal A, 2009,358(2):249-253. doi: 10.1016/j.apcata.2009.02.018

    50. [50]

      Pan L, Adams K M, Hernandez H E. Porous Lanthanide-Organic Frameworks:Synthesis, Characterization, and Unprecedented Gas Adsorption Properties[J]. J Am Chem Soc, 2003,125(10):3062-3067. doi: 10.1021/ja028996w

    51. [51]

      GUO Jintao, CHEN Yong, JING Yu. Synthesis of Metal Organic Framework MIL-101 with Acetate as Mineralization Agent[J]. Chem J Chinese Univ, 2012,33(4):668-672.  

    52. [52]

      Zhao T, Yang L, Feng P. Facile Synthesis of Nano-sized MIL-101(Cr) with the Addition of Acetic Acid[J]. Inorg Chim Acta, 2018,71:440-4455.  

    53. [53]

      Yang L T, Qiu L G, Hu S M. Rapid Hydrothermal Synthesis of MIL-101(Cr) Metal-Organic Framework Nanocrystals Using Expanded Graphite as a Structure-Directing Template[J]. Inorg Chem Commun, 2013,35:265-267. doi: 10.1016/j.inoche.2013.06.034

    54. [54]

      Zhao T, Li S H, Shen L. The Sized Controlled Synthesis of MIL-101(Cr) with Enhanced CO2 Adsorption Property[J]. Inorg Chem Commun, 2018,96:47-51. doi: 10.1016/j.inoche.2018.07.036

    55. [55]

      Zhou Z, Mei L, Ma C. A Novel Bimetallic MIL-101(Cr, Mg) with High CO2 Adsorption Capacity and CO2/N2 Selectivity[J]. Chem Eng Sci, 2016,147:109-117. doi: 10.1016/j.ces.2016.03.035

    56. [56]

      ZHAO Zhenxia, LI Xuemei, LI Zhong, et al. Synthesis of MIL-101 Porous Materials by Microwave Irradiation and Their Heat of Adsorption for Xylene[C]//The 15th Symposium on Reactive Polymers, Chinese Chemical Society, Yantai, Shandong, China, 2010(in Chinese).

    57. [57]

      HUANG Sisi. Synthesis of Metal-organic Frameworks-MOF-5 and MIL-101 and Their Adsorption/Desorption Properties for VOCs[D]. Guangdong: South China University of Technology, 2010(in Chinese).

    58. [58]

      WANG Pingping, CHEN Danping, WANG Shuhua. Chiral Postsynthetic Modification of Cr-MIL-101-NH2[J]. Chinese J Inorg Chem, 2017,33(5):817-822.  

    59. [59]

      SHEN Tingting. Preparation of Functional MIL-101 Type and UIO-66 type MOFs for the Adsorption of Dyes, Mercury and Arsenic form Aqueous Solution[D]. Nanchang: Nanchang Hangkong University, 2015(in Chinese).

    60. [60]

      Vo T K, Bae Y S, Chang B J. Highly CO Selective Cu(I)-Doped MIL-100(Fe) Adsorbent with High CO/CO2 Selectivity due to π Complexation:Effects of Cu(Ⅰ) Loading and Activation Temperature[J]. Micropor Mesopor Mater, 2019,274:17-24. doi: 10.1016/j.micromeso.2018.07.024

    61. [61]

      Cai X, Li J, Zhang Z. Novel Pb2+ Ion Imprinted Polymers Based on Ionic Interaction via Synergy of Dual Functional Monomers for Selective Solid-Phase Extraction of Pb2+ in Water Samples[J]. ACS Appl Mater Interfaces, 2014,6(1):305-313. doi: 10.1021/am4042405

    62. [62]

      Khajeh M, Heidari Z S, Sanchooli E. Synthesis, Characterization and Removal of Lead from Water Samples Using Lead-Ion Imprinted Polymer[J]. Chem Eng J, 2011,166(3):1158-1163. doi: 10.1016/j.cej.2010.12.018

    63. [63]

      Goel J, Kadirvelu K, Rajagopal C. Removal of Lead(Ⅱ) by Adsorption Using Treated Granular Activated Carbon:Batch and Column Studies[J]. J Hazard Mater, 2005,125(1):211-220.

    64. [64]

      Mckinlay A C, Morris R E, Horcajada P. BioMOFs:Metal-Organic Frameworks for Biological and Medical Applications[J]. Angew Chem Int Ed, 2010,49(36):6260-6266. doi: 10.1002/anie.201000048

    65. [65]

      Luo X, Ding L, Luo J. Adsorptive Removal of Pb(II) Ions from Aqueous Samples with Amino-Functionalization of Metal-Organic Frameworks MIL-101(Cr)[J]. J Chem Eng Data, 2015,60(6):1732-1743. doi: 10.1021/je501115m

    66. [66]

      Rivera-Utrilla J, S Nchez-Polo M, Ferro-Garc A M. Pharmaceuticals as Emerging Contaminants and Their Removal From Water. A Review[J]. Chemosphere, 2013,93(7):1268-1287. doi: 10.1016/j.chemosphere.2013.07.059

    67. [67]

      Akhtar J, Amin N A S, Shahzad K. A Review on Removal of Pharmaceuticals from Water by Adsorption[J]. Desalination Water Treat, 2016,57(27):12842-12860. doi: 10.1080/19443994.2015.1051121

    68. [68]

      Homem V, Santos L. Degradation and Removal Methods of Antibiotics from Aqueous Matrices-A review[J]. J Environ Manage, 2011,92(10):2304-2347. doi: 10.1016/j.jenvman.2011.05.023

    69. [69]

      Lu N, Wang T, Zhao P. Experimental and Molecular Docking Investigation on Metal-Organic Framework MIL-101(Cr) as a Sorbent for Vortex Assisted Dispersive Micro-solid-phase Extraction of Trace 5-Nitroimidazole Residues in Environmental Water Samples Prior to UPLC-MS/MS Analysis[J]. Anal Bioanal Chem, 2016,298515.  

    70. [70]

      Seo P W, Khan N A, Jhung S H. Removal of Nitroimidazole Antibiotics from Water by Adsorption over Metal-Organic Frameworks Modified with Urea or Melamine[J]. Chem Eng J, 2017,315:92-100. doi: 10.1016/j.cej.2017.01.021

    71. [71]

      Borrell A, Aguilar A. Organochlorine Concentrations Declined During 1987-2002 in Western Mediterranean Bottlenose Dolphins, A Coastal Top Predator[J]. Chemosphere, 2007,66(2):347-352. doi: 10.1016/j.chemosphere.2006.04.074

    72. [72]

      Huang Z Z, Hian K L. Micro-solid-phase Extraction of Organochlorine Pesticides Using Porous Metal-organic Framework MIL-101 as Sorbent[J]. J Chromatogr A, 2015,1401:9-16. doi: 10.1016/j.chroma.2015.04.052

    73. [73]

      ZHANG Wei. Application Progress in Bentonite to Adsorb Organic Pollutants in Water[J]. Environ Prot Chem Ind, 2018,38(3):267-274. doi: 10.3969/j.issn.1006-1878.2018.03.004

    74. [74]

      FANG Qunkai, XUE Yaojia, YE Xuwaner. Photocatalytic Degradation of Organic Dye Solution by Magnetic BiOBr Composites[J]. Text Auxil, 2018,35(7):1-5. doi: 10.3969/j.issn.1004-0439.2018.07.001

    75. [75]

      LUO Mengqi, WEI Chaoshuai, ZHANG Xiaoqing. Degradation of Organic Dye Wastewater Using Polycarboxylic Acid Modified SR-Photo-Fenton[J]. Chinese J Environ Eng, 2017,11(7):4003-4009.  

    76. [76]

      XU Yanli, YANG Hanbiao, LV Mengmeng. Effects of Various Factors on Adsorption of MIL-101(Cr) for Dyes in Aqueous Solutions[J]. CIESC J, 2015,66(10):4025-4031. doi: 10.11949/j.issn.0438-1157.20140942

    77. [77]

      Chen C, Zhang M, Guan Q. Kinetic and Thermodynamic Studies on the Adsorption of Xylenol Orange onto MIL-101(Cr)[J]. Chem Eng J, 2012,183:60-67. doi: 10.1016/j.cej.2011.12.021

    78. [78]

      Cao Y, Cheng J H, Chen Y C. Enhanced Adsorption Performance of MoS2 Nanosheet-Coated MIL-101 Hybrids for the Removal of Aqueous Rhodamine B[J]. J Colloid Interface Sci, 2017,504:39-47. doi: 10.1016/j.jcis.2017.05.020

    79. [79]

      Shafiei M, Alivand M S, Rashidi A. Synthesis and Adsorption Performance of a Modified Micro-mesoporous MIL-101(Cr) for VOCs Removal at Ambient Conditions[J]. Chem Eng J, 2018,341:164-174. doi: 10.1016/j.cej.2018.02.027

    80. [80]

      Férey C, Mellot-D , Serre C. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005,309(5743):2024-2042.  

    81. [81]

      CHA Yongru, ZOU Jianming. Radioactive Iodine Pollution and Stable Iodide Application in Nuclear Accidents[J]. China Occup Med, 1999(2):53-56.  

    82. [82]

      QI Bingbing, MAO Ping, YANG Yi. Adsorption and Release of Metal-Organic Framework MIL-101 for Gaseous Iodine[J]. Equip Environ Eng, 2016,13(6):5-9.  

    83. [83]

      CHEN Yu, MAO Ping, YIN Xin. Preparation of Ag Doped MIL-101 and Its Adsorption Performance for Iodide Ions[J]. China Powder Sci Technol, 2016,22(2):51-54, 62.  

    84. [84]

      JIANG Zheng, ZHANG Yi, LI Qiang. Iodide Ions in MIL-101 Adsorbent Solution Modified with Copper[J]. Equip Environ Eng, 2017,14(1):66-70.  

    85. [85]

      GUI Xia, WANG Chenweu, YUN Zhi. Research Progress of Pre-combustion CO2 Capture[J]. Chem Ind Eng Progress, 2014,33(7):1895-1901.  

    86. [86]

      Hu T D, Sun Y W, Ding Y H. A Quantum-Chemical Insight on Chemical Fixation Carbon Dioxide with Epoxides Co-catalyzed by MIL-101 and Tetrabutylammonium Bromide[J]. J CO2 Util, 2018,28:200-206. doi: 10.1016/j.jcou.2018.09.027

    87. [87]

      WANG Xiaoguang, LIU Dai, CHEN Shaoyun. Performance of Pentaethylenehexamine Modified MIL-101(Cr) Metal-organic Framework in CO2 Adsorption[J]. J Fuel Chem Technol, 2017,45(4):484-490. doi: 10.3969/j.issn.0253-2409.2017.04.013

    88. [88]

      Montazerolghaem M, Aghamiri S F, Talaie M R. A Comparative Investigation of CO2Adsorption on Powder and Pellet forms of MIL-101[J]. J Taiwan Inst Chem Eng, 2017,72:45-52. doi: 10.1016/j.jtice.2016.12.037

    89. [89]

      WANG Yi, WANG Yan, CAO Jianliang. Preparation of Porous LaMO3(M=Co, Fe) Nanocatalysts and Their Catalytic Activities for CO Oxidation[J]. Chem Ind Eng Prog, 2017,36(S1):261-266.  

    90. [90]

      Blǎniţǎ G, Streza M, Lazár M D. Kinetics of Hydrogen Adsorption in MIL-101 Single Pellets[J]. Int J Hydrogen Energy, 2017,42(5):3064-3077. doi: 10.1016/j.ijhydene.2017.01.010

    91. [91]

      XU Yanyan, DUAN Long. Preparation and CO Adsorption Performance of Cu/MIL-101 Adsorbents[J]. Technol Develop Chem Ind, 2017,46(3):12-17. doi: 10.3969/j.issn.1671-9905.2017.03.004

    92. [92]

      CHEN Zhiping, ZHANG Zhenrong, LING Lixia. Adsorptive Performance of Sulfur Compounds on Metal Organic Framework Material MIL-101[J]. J Taiyuan Univ Technol, 2017,48(5):703-710.  

    93. [93]

      Kooti M, Pourreza A, Rashidi A. Preparation of MIL-101-nanoporous Carbon as a New Type of Nanoadsorbent for H2S Removal from Gas Stream[J]. J Nat Gas Sci Eng, 2018,57:31-338. doi: 10.1016/j.jngse.2018.06.033

    94. [94]

      Zhou Qiqi. Study on Adsorption of Elemental Mercury on FeCl3 Modified MIL-101(Cr) at Lowtemperatures[D]. Kunming: Kunming University of Science and Technology, 2018(in Chinese).

    95. [95]

      Pourreza A, Askari S, Rashidi A. A Highly Efficient MIL-101(Cr)-Graphene-Molybdenum Oxide Nano Composite for Selective Oxidation of Hydrogen Sulfide into Elemental Sulfur[J]. J Ind Eng Chem, 2019,71:308-317. doi: 10.1016/j.jiec.2018.11.040

    96. [96]

      MA Shushuang. Application of New Adsorbent GO@MOFs in Treatment of Cr(Ⅵ) in Water[D]. Tianjin: Tianjin Polytechnic University, 2016(in Chinese).

    97. [97]

      Mirsoleimani-Azizi S M, Setoodeh P, Samimi F. Diazinon Removal from Aqueous Media by Mesoporous MIL-101(Cr) in a Continuous Fixed-Bed System[J]. J Environ Chem Eng, 2018,6(4):4653-4664. doi: 10.1016/j.jece.2018.06.067

    98. [98]

      ZHANG Kunlei, BAI Ruyan, ZHENG Li. Development of Electrochemical Sensor for Morphine Based on Metal Organic Framework MIL-101[J]. Chem Res Appl, 2016,28(10):1433-1438. doi: 10.3969/j.issn.1004-1656.2016.10.012

    99. [99]

      Zhang W Q, Zhang Z Y, Li Y C. Novel Nanostructured MIL-101(Cr)/XC-72 Modified Electrode Sensor:A Highly Sensitive and Selective Determination of Chloramphenicol[J]. Sens Actuators B:Chem, 2017,247:756-764. doi: 10.1016/j.snb.2017.03.104

    100. [100]

      Wang Y D, Dai X P, He X. MIL-101(Cr)@GO for Dispersive Micro-solid-phase Extraction of Pharmaceutical Residue in Chicken Breast Used in Microwave-Assisted Coupling with HPLC-MS/MS Detection[J]. J Pharm Biomed Anal, 2017:440-446.

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    4. [4]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    5. [5]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    8. [8]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    10. [10]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(48)
  • Abstract views(3187)
  • HTML views(754)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return