Citation: SONG Junjie, GONG Mengting, TIAN Haixi, LI Hui, HUANG Xinhui, ZOU Lingmin, WEI Yongqing. Preparation of Novel Molecularly Imprinted Microsphere by Using 2-Isopentyl Cyclopentanone as the Dummy Template and Its Adsorption Behavior[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1333-1342. doi: 10.11944/j.issn.1000-0518.2019.11.190127 shu

Preparation of Novel Molecularly Imprinted Microsphere by Using 2-Isopentyl Cyclopentanone as the Dummy Template and Its Adsorption Behavior

  • Corresponding author: LI Hui, lihuijsdx@163.com
  • Received Date: 3 May 2019
    Revised Date: 26 June 2019
    Accepted Date: 15 August 2019

    Fund Project: the National Natural Science Foundation of China 21865011Supported by the National Natural Science Foundation of China(No.21865011), the National Natural Science Foundation of Hunan Province(No.2018JJ2310), the Innovation Platform Open Fund of Hunan Province(No.16K071), and the Jishou University Innovation Fund for Graduate Students(No.Jdy22)the Jishou University Innovation Fund for Graduate Students Jdy22the Innovation Platform Open Fund of Hunan Province 16K071the National Natural Science Foundation of Hunan Province 2018JJ2310

Figures(10)

  • Novel molecularly imprinted polymer (MIP) microspheres were prepared by the precipitation polymerization method using 2-isopentyl cyclopentanone as the dummy template. The surface chemical groups were characterized by Fourier transform infrared spectroscopy (FTIR) and the particle size distribution was characterized by scanning electronic microscope (SEM). Adsorption dynamics, isotherm adsorption behavior and application capacity for this MIP in solid phase extraction of rose oxide were explored. The results indicated that MIPs could reach adsorption equilibrium within 25 min, showing a rapid adsorption dynamics, and the first order model was better to describe its adsorption dynamics behavior. Additionally, the Freundlich isotherm model was more suitable to describe the isotherm adsorption behavior and a maximum binding site number (149.3 μmol/g) was obtained by fitting the isotherm data to the Langmuir model. A mean adsorption potential energy of 166.7 kJ/mol indicated a chemical adsorption process for MIPs. The selectivity factor for MIPs toward rose oxide relative to geraniol and citronellol was 3.710 and 5.636, respectively. Especially, this MIP possessed higher competitive adsorption capacity toward rose oxide in the mixture, with an adsorption capacity of 18.03 mg/g. Under the optimized solid phase extraction conditions, i.e., washing by using 1 mL acetonitrile, 1 mL acetonitrile-water mixture(volume ratio 9.5:0.5) and 2 mL acetonitrile-methanol-water mixture (volume ratio 8:1:2) and eluting by using 3 mL methanol-acetic acid mixture(volume ratio 9:1), rose oxide can be separated and enriched from crude rose extract by using molecularly imprinted polymeric solid phase extraction, with a recovery of 96.23%.
  • 加载中
    1. [1]

      Fabiana R N, Danielle G S, Flavielle M D M. Anti-inflammatory Properties of Rose Oxide[J]. Int Immunopharmacol, 2012,14(4):79-784.  

    2. [2]

      ZHANG Rui, WEI Anzhi, YANG Tuxi. Studies on Three Kinds of Fragrant Type Rose Essential Oil Properties[J]. Acta Botan Boreali-Occiden Sin, 2003,23(10):1768-1771. doi: 10.3321/j.issn:1000-4025.2003.10.019

    3. [3]

      Zhao C Y, Xue J, Cai X D. Assessment of the Key Aroma Compounds in Rose-Based Products[J]. J Food Drug Anal, 2016,24(3):471-476. doi: 10.1016/j.jfda.2016.02.013

    4. [4]

      Giancarlo F, Francesca D A, Michele M M. Bioactive Compounds and Antioxidant Activity of Four Rose Hip Species from Spontaneous Sicilian Flora[J]. Food Chem, 2019,289:56-64. doi: 10.1016/j.foodchem.2019.02.127

    5. [5]

      Roghaieh M, Mohammad J S, Akbar K. Extraction of Essential Oils from Damask Rose Using Green and Conventional Techniques:Microwave and Ohmic Assisted Hydrodistillation Versus Hydrodistillation[J]. Sustainable Chem Pharm, 2018,8:76-81. doi: 10.1016/j.scp.2018.03.002

    6. [6]

      LU Boqiong, LUO Shuqin, ZHANG Liping. Component Analysis and Technique Optimization of Super Critical Carbon Dioxide Fluid Extraction of Oils in Ledum palustre L. var. dilioatum wahl[J]. Modern Agric Sci Technol, 2014,6(6):173-175. doi: 10.3969/j.issn.1007-5739.2014.06.108

    7. [7]

      Umesh S, Pratibha D, Rajender S S. In Situ Rose Oxide Enrichment Led Valorization of Citronella (Cymbopogon winterianus) Essential Oil[J]. Ind Crops Prod, 2017,97:567-573. doi: 10.1016/j.indcrop.2017.01.002

    8. [8]

      Maria C, Sabrina C C, Sandro D. Molecularly Imprinted Polymer for Selective Adsorption of Diclofenac from Contaminated Water[J]. Chem Eng J, 2019,367:180-188. doi: 10.1016/j.cej.2019.02.146

    9. [9]

      Zhou T Y, Ding L, Che G B. Recent Advances and Trends of Molecularly Imprinted Polymers for Specific Recognition in Aqueous Matrix:Preparation and Application in Sample Pretreatment[J]. TrAC Trends Anal Chem, 2019,114:11-28. doi: 10.1016/j.trac.2019.02.028

    10. [10]

      Sun X L, Wang M H, Yang L X. Preparation and Evaluation of Dummy Template Molecularly Imprinted Polymer as a Potential Sorbent for Solid Phase Extraction of Imidazole Fungicides from River Water[J]. J Chromatogr A, 2019,1586:1-8. doi: 10.1016/j.chroma.2018.11.077

    11. [11]

      Zhang J J, Chen Y, Wu W Y. Hollow Porous Dummy Molecularly Imprinted Polymer as a Sorbent of Solid-Phase Extraction Combined with Accelerated Solvent Extraction for Determination of Eight Bisphenols in Plastic Products[J]. Microchem J, 2019,145:1176-1184. doi: 10.1016/j.microc.2018.12.031

    12. [12]

      Li Z G, Wang J J, Chen X. A Novel Molecularly Imprinted Polymer-Solid Phase Extraction Method Coupled with High Performance Liquid Chromatography Tandem Mass Spectrometry for the Determination of Nitrosamines in Water and Beverage Samples[J]. Food Chem, 2019,292:267-274. doi: 10.1016/j.foodchem.2019.04.036

    13. [13]

      Sun W S, Tan R, Zheng W G. Molecularly Imprinted Polymer Containing Fe(Ⅲ) Catalysts for Specific Substrate Recognition[J]. Chinese J Catal, 2013,34(8):1589-1598. doi: 10.1016/S1872-2067(12)60624-X

    14. [14]

      Mohammad N, Arash M, Seyed A M. Preparation, Evaluation and Application of Core-Shell Molecularly Imprinted Particles as the Sorbent in Solid-phase Extraction and Analysis of Lincomycin Residue in Pasteurized Milk[J]. Food Chem, 2019,288:29-38. doi: 10.1016/j.foodchem.2019.02.087

    15. [15]

      WANG Susu, ZHANG Yue, LI Hui. Preparation, Characterization and Recognition Behavior of Quercetin-Rutin Bi-template Molecularly Imprinted Polymers[J]. Chinese J Appl Chem, 2015,32(11):1290-1298. doi: 10.11944/j.issn.1000-0518.2015.11.150145 

    16. [16]

      Li H, Xu M M, Wang S S. Preparation, Characterization and Selective Recognition for Vanillic Acid Imprinted Mesoporous Silica Polymers[J]. Appl Surf Sci, 2015,328:649-657. doi: 10.1016/j.apsusc.2014.12.085

    17. [17]

      Guo L H, Ma X G, Xie X W. Preparation of Dual-Dummy-Template Molecularly Imprinted Polymers Coated Magnetic Graphene Oxide for Separation and Enrichment of Phthalate Esters in Water[J]. Chem Eng J, 2019,361:245-255. doi: 10.1016/j.cej.2018.12.076

    18. [18]

      Song Y P, Li N, Zhang H C. Dummy Template Molecularly Imprinted Polymer for Solid Phase Extraction of Phenothiazines in Meat Based on Computational Simulation[J]. Food Chem, 2017,233:422-428. doi: 10.1016/j.foodchem.2017.04.146

    19. [19]

      Miura C, Li H, Matsunaga H. Molecularly Imprinted Polymer for Chlorogenic Acid by Modified Precipitation Polymerization and Its Application to Extraction of Chlorogenic Acid from Eucommia ulmodies Leaves[J]. J Pharm Biomed Anal, 2015,114:139-144. doi: 10.1016/j.jpba.2015.04.038

  • 加载中
    1. [1]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(4)
  • Abstract views(676)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return