-
[1]
Wang Y, Zhang Y, Zhao S. Bio-template Synthesis of Mo-Doped Polymer Carbon Nitride for Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ,
2019,248:44-53.
-
[2]
LI Jinge, CHEN Fen, LAN Fujun. Foam-Like Graphitic Carbon Nitride:Synthesis and Visible-Light-Driven Photocatalytic Activity for Hydrogen Evolution[J]. Chinese J Appl Chem,
2019,36(1):65-74.
-
[3]
WANG Danjun, SHEN Huidong, FU Mengxi. Construction of Bi2WO6 Quantu Dots(QDs) Decorated Bi2MoO6-xF2x Heterostructures with Enchanced Photocatalytic Activity[J]. Chinese J Inorg Chem,
2018,34(1):73-82.
-
[4]
Xia D, Wang W, Yin R. Enhanced Photocatalytic Inactivation of Escherichia Coli by a Novel Z-Scheme g-C3N4/m-Bi2O4 Hybrid Photocatalyst under Visible Light:The Role of Reactive Oxygen Species[J]. Appl Catal B:Environ,
2017,214:23-33.
-
[5]
Qiu F, Li W, Wang F. In-Situ Synthesis of Novel Z-Scheme SnS2/BiOBr Photocatalysts with Superior Photocatalytic Efficiency under Visible Light[J]. J Colloid Interface Sci,
2017,493:1-9.
-
[6]
Liu C, Wu Q, Ji M. Constructing Z-scheme Charge Separation in 2D Layered Porous BiOBr/Graphitic C3N4 Nanosheets Nanojunction with Enhanced Photocatalytic Activity[J]. J Alloy Compd,
2017,723:1121-131.
-
[7]
CHEN Shijie, TANG Xiaojun, CHEN Qian. Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6[J]. Chinese J Appl Chem,
2017,34(8):936-945.
-
[8]
Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,
1972,238(5358):37-38.
-
[9]
Shi X, Fujitsuka M, Lou Z. In Situ Nitrogen-Doped Hollow-TiO2/g-C3N4 Composite Photocatalyst with Efficient Charge Separation Boosting Water Reduction under Visible Light[J]. J Mater Chem A,
2017,5(20):1-26.
-
[10]
He Y, Zhang L, Fan M. Z-scheme SnO2-x/g-C3N4 Composite as an Efficient Photocatalyst for Dye Degradation and Photocatalytic CO2 Reduction[J]. Sol Energy Mater Sol Cells,
2015,137:175-184.
-
[11]
Li H, Liu J, Hou W. Synthesis and Characterization of g-C3N4/Bi2MoO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activity[J]. Appl Catal B:Environ,
2014,160/161:89-97.
-
[12]
Zhang Z, Huang J, Zhang M. Ultrathin Hexagonal SnS2 Nanosheets Coupled with g-C3N4 Nanosheetsas 2D/2D Heterojunction Photocatalysts Toward High Photocatalytic Activity[J]. Appl Catal B:Environ,
2015,163:298-305.
-
[13]
Jiao Y, Huang Q, Wang J. A Novel MoS2 Quantum Dots(QDs) Decorated Z-Scheme g-C3N4 Nanosheet/N-Doped Carbon Dots Heterostructure Photocatalyst for Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ,
2019,247:124-132.
-
[14]
Yan Q, Huang G F, Li D F. Facile Synthesis and Superior Photocatalytic and Electrocatalytic Performances of Porous B-Doped g-C3N4 Nanosheets[J]. J Mater Sci Technol,
2018,34(12):2515-2520.
-
[15]
Bai X, Wang L, Wang Y. Enhanced Oxidation Ability of g-C3N4 Photocatalyst via C60 Modification[J]. Appl Catal B:Environ,
2014,152/153:262-270.
-
[16]
Li Y, Jin R, Fang X. In situ Loading of Ag2WO4 on Ultrathin g-C3N4 Nanosheets with Highly Enhaned Photocatalytic Performance[J]. J Hazard Mater,
2016,313:219-228.
-
[17]
Jiang D, Chen L, Zhu J. Novel p-n Heterojunction Photocatalyst Constructed by Porous Graphite-Like C3N4 and Nanostructured BiOI:Facile Synthesis and Enhanced Photocatalytic[J]. Dalton Trans,
2013,42(44):15726-15734.
-
[18]
Xing C, Wu Z, Jiang D. Hydrothermal Synthesis of In2S3/g-C3N4 Heterojunctions with Enhanced Photocatalytic Activity[J]. J Colloid Interface Sci,
2014,433(12):9-15.
-
[19]
Zhang Q, Hu S, Fan Z. Preparation of g-C3N4/ZnMoCdS Hybrid Heterojunction Catalyst with Outstanding Nitrogen Photofixation Performance under Visible Light via Hydrothermal Post-treatment[J]. Dalton Trans,
2016,45:3497-3505.
-
[20]
Li M, Zhang L, Wu M. Mesostructured CeO2/g-C3N4 Nanocomposites:Remarkably Enhanced Photocatalytic Activity for CO2 Reduction by Mutual Component Activations[J]. Nano Energy,
2016,19:145-155.
-
[21]
Tian Y, Chang B, Lu J. Hydrothermal Synthesis of Graphitic Carbon Nitride Bi2WO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities[J]. ACS Appl Mater Interfaces,
2013,5(15):7079-7085.
-
[22]
He R A, Cao S W, Zhou P. Recent Advances in Visible Light Bi-Based Photocatalysts[J]. Chinese J Catal,
2014,35(11):989-1007.
-
[23]
Sun Z, Guo J, Zhu S. A High-performance Bi2WO6-graphene Photocatalyst for Visible Light-induced H2 and O2 Generation[J]. Nanoscale,
2014,6(4):2186-2193.
-
[24]
Zhu C, Liu Y, Cao H, et al. Insight into the Influence of Morphology of Bi2WO6 for Photocatalytic Degradation of VOCs under Visible Light[J]. Colloid Surf A, 2019, 13, In Press, Accepted Manuscript.
-
[25]
Li C, Chen G, Sun J. A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production[J]. ACS Appl Mater Interfaces,
2015,7(46):25716-25724.
-
[26]
Liao Y B, Wang J X, Lin J S. Synthesis, Photocatalytic Activities and Degradation Mechanism of Bi2WO6 Toward Crystal Violet Dye[J]. Catal Today,
2011,174:148-159.
-
[27]
Wang C, Zhang H, Li F. Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation[J]. Environ Sci Technol,
2010,44(17):6843-6848.
-
[28]
Wang H, Lu J, Wang F. Preparation, Characterization and Photocatalytic Performance of g-C3N4/Bi2WO6 Composites for Methyl Orange Degradation[J]. Ceram Int,
2014,40:9077-9086.
-
[29]
Liu L, Qi Y, Lu J. Dramatic Activity of a Bi2WO6@g-C3N4 Photocatalyst with a Core@Shell Structure[J]. RSC Adv,
2015,5:99339-99346.
-
[30]
Xiao X, Wei J, Yang Y. Photoreactivity and Mechanism of g-C3N4 and Ag Co-modified Bi2WO6 Microsphere under Visible Light Irradiation[J]. ACS Sustainable Chem Eng,
2016,4(6):2017-3023.
-
[31]
Wei H, Zhang Q, Zhang Y. Enhancement of the Cr(Ⅵ) Adsorption and Photocatalytic Reduction Activity of g-C3N4 by Hydrothermal Treatment in HNO3 Aqueous Solution[J]. Appl Catal A Gen,
2016,521:9-18.
-
[32]
Sun S M, Wang W Z, Jiang D. Bi2WO6 Quantum Dot-Intercalated Ultrathin Montmo-Rillonite Nanostructure and Its Enhanced Photocatalytic Performance[J]. Nano Res,
2014,7:1497-1506.
-
[33]
Chen W, Liu T Y, Huang T. In-situ Fabrication of a Novel Z-Scheme Bi2WO6 Quantum Dots/g-C3N4 Ultrathin Nanosheets Heterostructures with Improved Photocatalytic Activity[J]. Appl Surf Sci,
2015,355:379-387.
-
[34]
Cao J, Qin C, Wang Y. Calcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application[J]. Nanomaterials,
2017,7(98):1-13.
-
[35]
SUN Linin, ZHOU Yehong, WANG Fei. Adsorption Properties of Carboxymethyl-β-cyclodextrin Functionalized Ferroferric Oxide Magnetic Nonocomposites on Rhodamine B[J]. Chinese J Appl Chem,
2015,32(1):111-117.
-
[36]
Lee M S, Park S S, Lee G D. Synthesis of TiO2 Particles by Reverse Microemulsion Method Using Nonionic Surfactants with Different Hydrophilic and Hydrophobic Group and Their Photocatalytic Activity[J]. Catal Today,
2005,101:283-290.
-
[37]
Ilias P, Nadia T, Tatiana G. Photocatalytic Activity of Modified g-C3N4/TiO2 Nanocomposites for NOx Removal[J]. Catal Today,
2017,280:37-44.
-
[38]
Ji H, Fan Y, Yan J. Construction of SnO2/Graphene-Like g-C3N4 with Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv,
2017,7:36101-36111.
-
[39]
Che H, Liu C, Hu W. NGQD ActiveSites as Effective Collectors of Charge Carriers for Improving the Photocatalytic Performance of Z-Scheme g-C3N4/Bi2WO6 Heterojunctions[J]. Catal Sci Technol,
2018,8:622-631.
-
[40]
Hao R, Wang G, Tang H. Template-free Preparation of Macro/mesoporous g-C3N4/TiO2 Heterojunction Photocatalysts with Enhanced Visible Light Photocatalytic Activity[J]. Appl Catal B:Environ,
2016,187:47-58.