Citation: WANG Xingyue, ZHANG Shiyue, QU Weidong, GONG Weitao, NING Guiling. Synthesis of Pillar[5]arene-Based Porous Organic Polymers and Their Adsorption Properties[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1147-1154. doi: 10.11944/j.issn.1000-0518.2019.10.190070 shu

Synthesis of Pillar[5]arene-Based Porous Organic Polymers and Their Adsorption Properties

  • Corresponding author: GONG Weitao, wtgong@dlut.edu.cn
  • Received Date: 18 March 2019
    Revised Date: 19 April 2019
    Accepted Date: 23 May 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.21206016), the Fundamental Research Funds for the Central Universities(No.DUT17LK07)the Fundamental Research Funds for the Central Universities DUT17LK07the National Natural Science Foundation of China 21206016

Figures(8)

  • A porous organic polymer containing pillar[5]arene and 1, 3, 5-trirthynylbenze(TEB), namely, P[5]-TEB, was synthesized by Sonogashira cross-coupling reaction, then a novel polyhydroxyl polymer P[5]OH-TEB was obtained by demethylation reaction from the former polymer. The physical and chemical properties as well as adsorption properties of the two porous organic polymers were studied. Nitrogen adsorption test showed that the specific surface area of P[5]OH-TEB increased with the introduction of hydroxyl group, and the microporous structure was also introduced. It was indicated by dye adsorption that the adsorption process of the two polymers for methylene blue was consistent with the Langmuir adsorption equation, from which P[5]OH-TEB had a greater adsorption capacity for methylene blue. The adsorption kinetics test indicated that the adsorption process was more suitable for the pseudo-secondary kinetics model and belonged to the chemical adsorption process and P[5]OH-TEB got a faster adsorption rate after modification. It was showed by selectivity adsorption that the polymer can absorb more cationic dyes and the adsorption was decreased to anionic dye after the introduction of hydroxyl group into the polymer.
  • 加载中
    1. [1]

      Chen S, Zhang J, Zhang C. Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived from Phragmites australis[J]. Desalination, 2010,252(1/3):149-156.  

    2. [2]

      Crini G. Non-conventional Low-cost Adsorbents for Dye Removal:A Review[J]. Bioresour Technol, 2006,97(9):1061-1085. doi: 10.1016/j.biortech.2005.05.001

    3. [3]

      Mittal A, Malviya A, Kaur D. Studies on the Adsorption Kinetics and Isotherms for the Removal and Rcovery of Methyl Orange from Wastewaters Using Waste Materials[J]. J Hazard Mater, 2007,148(1/2):229-240.  

    4. [4]

      XUE Yonggang, GUAN Song, DAI Xiaohu. Research Progress of Membrane Separation Technology Used in Printing and Dyeing Wastewater Treatment and Reuse[J]. Text Dyeing Finish J, 2014,36(5):26-31. doi: 10.3969/j.issn.1005-9350.2014.05.010

    5. [5]

      Kumar R, Ahmad R. Biosorption of Hazardous Crystal Violet Dye from Aqueous Solution onto Treated Ginger Waste(TGW)[J]. Desalination, 2011,265(1/3):112-118.  

    6. [6]

      Auta M, Hameed B H. Preparation of Waste Tea Activated Carbon Using Potassium Acetate as an Activating Agent for Adsorption of Acid Blue 25 Dye[J]. Chem Eng J, 2011,171(2):502-509. doi: 10.1016/j.cej.2011.04.017

    7. [7]

      Asghar A, Abdul Raman A A, Wan Daud W M A. Advanced Oxidation Processes for in-situ Production of Hydrogen Peroxide/Hydroxyl Radical for Textile Wastewater Treatment:A Review[J]. J Cleaner Prod, 2015,87:826-838. doi: 10.1016/j.jclepro.2014.09.010

    8. [8]

      Fu Z, Zhang Y, Wang X. Textiles Wastewater Treatment Using Anoxic Filter Bed and Biological Wriggle Bed-Ozone Biological Aerated Filter[J]. Bioresour Technol, 2011,102(4):3748-3753. doi: 10.1016/j.biortech.2010.12.002

    9. [9]

      AN Liancai, HAN Jiufang, ZHANG Yinghui. Research and Application Progress on Porous Organic Polymers for Adsorption and Separation of Organic Pollutants in Water System[J]. Chinese J Appl Chem, 2018,35(9):1019-1025.  

    10. [10]

      Wu D, Xu F, Sun B. Design and Preparation of Porous Polymers[J]. Chem Rev, 2012,112(7):3959-4015. doi: 10.1021/cr200440z

    11. [11]

      Dawson R, Cooper A I, Adams D J. Nanoporous Organic Polymer Networks[J]. Prog Polym Sci, 2012,37(4):530-563. doi: 10.1016/j.progpolymsci.2011.09.002

    12. [12]

      Vincent G, Lukasz J W, Alkordi M. Porous Organic Polymers with Anchored Aldehydes:A New Platform for Post-synthetic Amine Functionalization en Route for Enhanced CO2 Adsorption Properties[J]. Chem Commun, 2014,50:1937-1940. doi: 10.1039/c3cc48228f

    13. [13]

      Chen Q, Liu D, Zhu J. Mesoporous Conjugated Polycarbazole with High Porosity via Structure Tuning[J]. Macromolecules, 2014,47(17):5926-5931. doi: 10.1021/ma501330v

    14. [14]

      Zhu Y, Zhang W. Reversible Tuning of Pore Size and CO2 Adsorption in Azobenzene Functionalized Porous Organic Polymers[J]. Chem Sci, 2014,5(12):4957-4961. doi: 10.1039/C4SC02305F

    15. [15]

      Xiang Z, Mercado R, Huck J M. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture[J]. J Am Chem Soc, 2015,137(41):13301-13307. doi: 10.1021/jacs.5b06266

    16. [16]

      Ogoshi T, Yamagishi T, Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes:New Key Players for Supramolecular Chemistry[J]. Chem Rev, 2016,116(14):7937-8002. doi: 10.1021/acs.chemrev.5b00765

    17. [17]

      Tan L, Li H, Tao Y. Pillar[5]arene-Based Supramolecular Organic Frameworks for Highly Selective CO2 -Capture at Ambient Conditions[J]. Adv Mater, 2014,26(41):7027-7031. doi: 10.1002/adma.201401672

    18. [18]

      Dai D, Li Z, Yang J. Supramolecular Assembly-Induced Emission Enhancement for Efficient Mercury(Ⅱ) Detection and Removal[J]. J Am Chem Soc, 2019,141(11):4756-4763. doi: 10.1021/jacs.9b01546

    19. [19]

      Wu M, Yang Y. A Fluorescent Pillarene Coordination Polymer[J]. Polym Chem, 2019,10(23):2980-2985. doi: 10.1039/C8PY01497C

    20. [20]

      Li Z, Li X, Yang Y. Conjugated Macrocycle Polymer Nanoparticles with Alternating Pillarenes and Porphyrins as Struts and Cyclic Nodes[J]. Small, 2019,15(12)1805509. doi: 10.1002/smll.201805509

    21. [21]

      Ma Y, Chen L, Li C. A fishing Rod-like Conjugated Polymer Bearing Pillar[5]arenes[J]. Chem Commun, 2016,52:6662-6664. doi: 10.1039/C6CC02059C

    22. [22]

      Li X, Li Z, Yang Y. Tetraphenylethylene-Interweaving Conjugated Macrocycle Polymer Materials as Two-Photon Fluorescence Sensors for Metal Ions and Organic Molecules[J]. Adv Mater, 2018,30(20)1800177. doi: 10.1002/adma.201800177

    23. [23]

      Lin Q, Fan Y, Mao P. Pillar[5]arene-Based Supramolecular Organic Framework with Multi-guest Detection and Recyclable Separation Properties[J]. Chem Eur J, 2018,24(4):777-783. doi: 10.1002/chem.201705107

    24. [24]

      Shi B, Guan H, Shangguan L. A Pillar[5]arene-Based 3D Network Polymer for Rapid Removal of Organic Micropollutants from Water[J]. J Mater Chem A, 2017,5(46):24217-24222. doi: 10.1039/C7TA08894A

    25. [25]

      Lan S, Zhan S, Ding J. Pillar[n]arene-Based Porous Polymers for Rapid Pollutant Removal from Water[J]. J Mater Chem A, 2017,5(6):2514-2518. doi: 10.1039/C6TA09266G

    26. [26]

      Ogoshi T, Yamafuji D, Tomohiro A. Achiral Guest-Induced Chiroptical Changes of a Planar-Chiral Pillar[5]arene Containing One π-Conjugated Unit[J]. Chem Commun, 2013,49:8782-8784. doi: 10.1039/c3cc44672g

    27. [27]

      Strutt N L, Fairen-Jimenez D, Iehl J. Incorporation of an A1/A2-Difunctionalized Pillar[5]arene into a Metal-Organic Framework[J]. J Am Chem Soc, 2012,134(42):17436-17439. doi: 10.1021/ja3082523

    28. [28]

      Ogoshi T, Shimada Y, Akutsu T. A Rod-Like Phenolic π-Conjugated Polymer with Pillar[5]arene Units in Its Main Chain[J]. Polymer, 2017,128:325-329. doi: 10.1016/j.polymer.2017.01.037

    29. [29]

      Zhang C, Zhu P, Tan L. Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment[J]. Macromolecules, 2015,48(23):8509-8514. doi: 10.1021/acs.macromol.5b02222

    30. [30]

      Kuhn P, Kr ger K, Thomas A. "Everything Is Surface":Tunable Polymer Organic Frameworks with Utrahigh Dye Sorption Capacity[J]. Chem Commun, 2008,44:5815-5817.  

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    19. [19]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(9)
  • Abstract views(1017)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return