Citation: SUN Jinyu, WANG Guilin, SHI Yufang, LIU Chengqi, ZHAO Minggen. Synthesis, Theoretical Investigation and Ultrafast Third-Order Nonlinear Optical Response of 2-(Pyren-1-yl)-1, 8-naphthyridine[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1172-1178. doi: 10.11944/j.issn.1000-0518.2019.10.190035 shu

Synthesis, Theoretical Investigation and Ultrafast Third-Order Nonlinear Optical Response of 2-(Pyren-1-yl)-1, 8-naphthyridine

  • Corresponding author: SHI Yufang, yfshi868@163.com
  • Received Date: 13 February 2019
    Revised Date: 15 April 2019
    Accepted Date: 15 May 2019

    Fund Project: Supported by the Shanxi "1331 Project" Key Subjects Construction(No.2017-122)the Shanxi "1331 Project" Key Subjects Construction 2017-122

Figures(11)

  • A new donor-acceptor(D-A) pyrene-containing naphthalene derivative 2-(pyrene-1-yl)-1, 8-naphthyl was synthesized and characterized by nuclear magnetic resonance spectrometry(1H NMR, 13C NMR), Fourier transform infrared spectrometry(FTIR) and liquid chromatography-mass spectrometry(LC-MS). The linear optical properties and third-order nonlinear optical absorption of 2-(pyrene-1-yl)-1, 8-naphthyridine(PN) were studied by means of the electron spectroscopy and Z-scan technique, respectively. The thermal stability of PN was determined by thermogravimetry and differential scanning calorimetry. The experimental results show that the nonlinear absorption coefficient of PN at 532 nm and 180 fs is β=9.0×10-14 m/W, exhibiting ultrafast third-order nonlinear optical response. The molecular orbital energy, polarizability and hyperpolarizability were calculated by density functional theory, and the results show that electron transfer can take place within the molecule. There is no absorbance at more than 450 nm in ultraviolet spectrum of PN. So it is a candidate material for the next in nonlinear optical absorption, laser protection, absorption optical switch or bistable devices.
  • 加载中
    1. [1]

      Liu X M, Laegsgaard J, Iegorov R. Nonlinearity-Tailored Fiber Laser Technology for Low-Noise, Ultra-wideband Tunable Femtosecond Light Generation[J]. Photonics Res, 2017,5(6):750-761. doi: 10.1364/PRJ.5.000750

    2. [2]

      Adams M J, Hurtado A, Labukhin D. Nonlinear Semiconductor Lasers and Amplifiers for All-Optical Information Processing[J]. Chaos, 2010,20(037102):1-12.  

    3. [3]

      Gindre D, Iliopoulos K, Krupka O. Coumarin-Containing Polymers for High Density Non-linear Optical Data Storage[J]. Molecules, 2016,21(147):1-13.  

    4. [4]

      Sokolov R I, Abdullin R R. Restoration of Static JPEG Images and RGB Video Frames by Means of Nonlinear Filtering in Conditions of Gaussian and Non-Gaussian Noise[J]. Radio Sci, 2017,52(11):1363-1373. doi: 10.1002/2017RS006392

    5. [5]

      Wampler R D, Begue N J, Simpson G J. Molecular Design Strategies for Optimizing the Nonlinear Optical Properties of Chiral Crystals[J]. Cryst Growth Des, 2008,8(8):2589-2594. doi: 10.1021/cg700732n

    6. [6]

      Shetty T C S, Raghavendra S, Kumar C S C. Nonlinear Absorption, Optical Limiting Behavior and Structural Study of a New Chalcone Derivative 1-(3, 4-Dimethylphenyl)-3-[4(methylsulfanyl) phenyl]prop-2-en-1-one[J]. Opt Laser Technol, 2016,77(1):23-30.  

    7. [7]

      Aithal S, Aithal P S, Bhat G. A Review on Sustainable Organic Materials for Optical Limiting Technology[J]. IJMIE, 2015,5(7):527-544.  

    8. [8]

      Lee K S, Kang R, Son B. All-optical THz Wave Switching Based on CH3NH3PbI3 Perovskites[J]. Nature, 2016,6(37912):1-6.  

    9. [9]

      Qin Z B, Wen Y Q, Shang Y L. Study of an Organic Nonlinear Optical Material for Nanoscale Data Storage by Scanning Tunneling Microscope[J]. Appl Phys A, 2007,87(2):277-280. doi: 10.1007/s00339-006-3827-2

    10. [10]

      Almeida E, Bitton O, Prior Y. Nonlinear Metamaterials for Holography[J]. Nat Commun, 2016,7(12533):1-7.  

    11. [11]

      Li Y J, Liu T F, Liu H B. Self-assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems[J]. Acc Chem Res, 2014,47(4):1186-1198. doi: 10.1021/ar400264e

    12. [12]

      Khamrang T, Velusamy M, Madhavan J. A Combined Experimental and Computational Investigations on Pyrene Based D-π-A Dyes[J]. Phys Chem Chem Phys, 2018,20(9):6264-6273. doi: 10.1039/C7CP08038G

    13. [13]

      Guldi D M, Luo C P, Swartz A. π-Conjugated Electroactive Oligomers:Energy and Electron Transducing Systems[J]. J Phys Chem A, 2004,108(3):455-467. doi: 10.1021/jp034186a

    14. [14]

      FAN Yaofeng, ZHANG Xingxiang. Progress in Studies of Solid-Solid Phase Change Materials[J]. Mater Rev, 2003,17(7):50-53, 81. doi: 10.3321/j.issn:1005-023X.2003.07.015

    15. [15]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision B.0l[CP]. Gaussian, Inc., Wallingford CT, 2010.

    16. [16]

      Beck A D. Density Functional Thermochemistry.Ⅲ.The Role of Exact Exchange[J]. J Chem Phys, 1993,98(7):5648-5659. doi: 10.1063/1.464913

    17. [17]

      Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J]. Phys Rev B, 1988,37(2):785-791. doi: 10.1103/PhysRevB.37.785

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    16. [16]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    17. [17]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    18. [18]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

Metrics
  • PDF Downloads(2)
  • Abstract views(333)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return