Citation: SUN Jinyu, WANG Guilin, SHI Yufang, LIU Chengqi, ZHAO Minggen. Synthesis, Theoretical Investigation and Ultrafast Third-Order Nonlinear Optical Response of 2-(Pyren-1-yl)-1, 8-naphthyridine[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1172-1178. doi: 10.11944/j.issn.1000-0518.2019.10.190035 shu

Synthesis, Theoretical Investigation and Ultrafast Third-Order Nonlinear Optical Response of 2-(Pyren-1-yl)-1, 8-naphthyridine

  • Corresponding author: SHI Yufang, yfshi868@163.com
  • Received Date: 13 February 2019
    Revised Date: 15 April 2019
    Accepted Date: 15 May 2019

    Fund Project: Supported by the Shanxi "1331 Project" Key Subjects Construction(No.2017-122)the Shanxi "1331 Project" Key Subjects Construction 2017-122

Figures(11)

  • A new donor-acceptor(D-A) pyrene-containing naphthalene derivative 2-(pyrene-1-yl)-1, 8-naphthyl was synthesized and characterized by nuclear magnetic resonance spectrometry(1H NMR, 13C NMR), Fourier transform infrared spectrometry(FTIR) and liquid chromatography-mass spectrometry(LC-MS). The linear optical properties and third-order nonlinear optical absorption of 2-(pyrene-1-yl)-1, 8-naphthyridine(PN) were studied by means of the electron spectroscopy and Z-scan technique, respectively. The thermal stability of PN was determined by thermogravimetry and differential scanning calorimetry. The experimental results show that the nonlinear absorption coefficient of PN at 532 nm and 180 fs is β=9.0×10-14 m/W, exhibiting ultrafast third-order nonlinear optical response. The molecular orbital energy, polarizability and hyperpolarizability were calculated by density functional theory, and the results show that electron transfer can take place within the molecule. There is no absorbance at more than 450 nm in ultraviolet spectrum of PN. So it is a candidate material for the next in nonlinear optical absorption, laser protection, absorption optical switch or bistable devices.
  • 加载中
    1. [1]

      Liu X M, Laegsgaard J, Iegorov R. Nonlinearity-Tailored Fiber Laser Technology for Low-Noise, Ultra-wideband Tunable Femtosecond Light Generation[J]. Photonics Res, 2017,5(6):750-761. doi: 10.1364/PRJ.5.000750

    2. [2]

      Adams M J, Hurtado A, Labukhin D. Nonlinear Semiconductor Lasers and Amplifiers for All-Optical Information Processing[J]. Chaos, 2010,20(037102):1-12.  

    3. [3]

      Gindre D, Iliopoulos K, Krupka O. Coumarin-Containing Polymers for High Density Non-linear Optical Data Storage[J]. Molecules, 2016,21(147):1-13.  

    4. [4]

      Sokolov R I, Abdullin R R. Restoration of Static JPEG Images and RGB Video Frames by Means of Nonlinear Filtering in Conditions of Gaussian and Non-Gaussian Noise[J]. Radio Sci, 2017,52(11):1363-1373. doi: 10.1002/2017RS006392

    5. [5]

      Wampler R D, Begue N J, Simpson G J. Molecular Design Strategies for Optimizing the Nonlinear Optical Properties of Chiral Crystals[J]. Cryst Growth Des, 2008,8(8):2589-2594. doi: 10.1021/cg700732n

    6. [6]

      Shetty T C S, Raghavendra S, Kumar C S C. Nonlinear Absorption, Optical Limiting Behavior and Structural Study of a New Chalcone Derivative 1-(3, 4-Dimethylphenyl)-3-[4(methylsulfanyl) phenyl]prop-2-en-1-one[J]. Opt Laser Technol, 2016,77(1):23-30.  

    7. [7]

      Aithal S, Aithal P S, Bhat G. A Review on Sustainable Organic Materials for Optical Limiting Technology[J]. IJMIE, 2015,5(7):527-544.  

    8. [8]

      Lee K S, Kang R, Son B. All-optical THz Wave Switching Based on CH3NH3PbI3 Perovskites[J]. Nature, 2016,6(37912):1-6.  

    9. [9]

      Qin Z B, Wen Y Q, Shang Y L. Study of an Organic Nonlinear Optical Material for Nanoscale Data Storage by Scanning Tunneling Microscope[J]. Appl Phys A, 2007,87(2):277-280. doi: 10.1007/s00339-006-3827-2

    10. [10]

      Almeida E, Bitton O, Prior Y. Nonlinear Metamaterials for Holography[J]. Nat Commun, 2016,7(12533):1-7.  

    11. [11]

      Li Y J, Liu T F, Liu H B. Self-assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems[J]. Acc Chem Res, 2014,47(4):1186-1198. doi: 10.1021/ar400264e

    12. [12]

      Khamrang T, Velusamy M, Madhavan J. A Combined Experimental and Computational Investigations on Pyrene Based D-π-A Dyes[J]. Phys Chem Chem Phys, 2018,20(9):6264-6273. doi: 10.1039/C7CP08038G

    13. [13]

      Guldi D M, Luo C P, Swartz A. π-Conjugated Electroactive Oligomers:Energy and Electron Transducing Systems[J]. J Phys Chem A, 2004,108(3):455-467. doi: 10.1021/jp034186a

    14. [14]

      FAN Yaofeng, ZHANG Xingxiang. Progress in Studies of Solid-Solid Phase Change Materials[J]. Mater Rev, 2003,17(7):50-53, 81. doi: 10.3321/j.issn:1005-023X.2003.07.015

    15. [15]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision B.0l[CP]. Gaussian, Inc., Wallingford CT, 2010.

    16. [16]

      Beck A D. Density Functional Thermochemistry.Ⅲ.The Role of Exact Exchange[J]. J Chem Phys, 1993,98(7):5648-5659. doi: 10.1063/1.464913

    17. [17]

      Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J]. Phys Rev B, 1988,37(2):785-791. doi: 10.1103/PhysRevB.37.785

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    8. [8]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Qian Peng Pengfei Yao Zicong Wang Xiufang Xu Hongwei Sun . Promote the Training of Top Talents by Optimizing the Theoretical Computational Chemistry Curriculum System. University Chemistry, 2025, 40(5): 261-267. doi: 10.12461/PKU.DXHX202408012

    11. [11]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    12. [12]

      Hui Li Jia Nie Zhongyuan Lü Hujun Qian Youliang Zhu Fuquan Bai Zexing Qu Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007

    13. [13]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    17. [17]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

Metrics
  • PDF Downloads(2)
  • Abstract views(506)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return