Citation: GUO Hongchen, QIN Yusheng, WANG Xianhong, WANG Fosong. Copolymerization of Carbon Dioxide and Propylene Oxide under Aluminum Porphyrin Catalyst[J]. Chinese Journal of Applied Chemistry, ;2019, 36(10): 1118-1127. doi: 10.11944/j.issn.1000-0518.2019.10.190031 shu

Copolymerization of Carbon Dioxide and Propylene Oxide under Aluminum Porphyrin Catalyst

  • Corresponding author: WANG Xianhong, xhwang@ciac.ac.cn
  • Received Date: 29 January 2019
    Revised Date: 5 March 2019
    Accepted Date: 2 April 2019

    Fund Project: the Key Research Projects in Frontier Science of the Chinese Academy of Sciences QYZDJ-SSW-JSC017Supported by the Key Research Projects in Frontier Science of the Chinese Academy of Sciences(No.QYZDJ-SSW-JSC017)

Figures(3)

  • Aluminum porphyrin is a soil-tolerant metal porphyrin complex. Although its catalytic activity on the copolymerization of CO2 and propylene oxide has been disclosed by Inoue in 1978, the catalytic activity is still very low, and the synthesized poly(propylene carbonate) has low relative molecular mass. It is a big challenge to make progress on the catalytic performance of aluminum porphyrin. In this work, the electronic environment of central aluminum was adjusted by delicate design of porphyrin ligand using meso-tetrasubstituted porphyrin derivatives that were employed to catalyze the copolymerization of CO2 and propylene oxide with bis-(triphenyl phosphine) iminium chloride(PPNCl) as the co-catalyst. It was found that the electronic environment of the central aluminum ion had great effect on the catalytic performance of aluminum porphyrin catalysts, the turnover frequency(TOF) value of Cl substituted aluminum porphyrin catalyst 6a reached 2672 h-1 at 90℃ and 3 MPa, while poly(propylene carbonate) with relative molecular mass of 1.84×104 was afforded using catalyst 4b bearing toluene sulfonic group(OTs-) as axial group of good leaving ability. Our work indicates that delicate designed aluminum porphyrin can become a possible candidate as high performance catalyst in the copolymerization of CO2 and propylene oxide, under optimized copolymerization conditions.
  • 加载中
    1. [1]

      Bui M, Adjiman C S, Bardow A. Carbon Capture and Storage(CCS):The Way Forward[J]. Energy Environ Sci, 2018,11(5):1062-1176. doi: 10.1039/C7EE02342A

    2. [2]

      Artz J, Muller T E, Thenert K. Sustainable Conversion of Carbon Dioxide:An Integrated Review of Catalysis and Life Cycle Assessment[J]. Chem Rev, 2018,118(2):434-504. doi: 10.1021/acs.chemrev.7b00435

    3. [3]

      Sakakura T, Kohno K. The Synthesis of Organic Carbonates from Carbon Dioxide[J]. Chem Commun, 2009(11):1312-1330. doi: 10.1039/b819997c

    4. [4]

      Martín C, Fiorani G, Kleij A W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates[J]. ACS Catal, 2015,5(2):1353-1370. doi: 10.1021/cs5018997

    5. [5]

      Coates G W, Moore D R. Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides:Discovery, Reactivity, Optimization, and Mechanism[J]. Angew Chem Int Ed, 2004,43(48):6618-6639. doi: 10.1002/anie.200460442

    6. [6]

      Qin Y, Wang X. Carbon Dioxide-Based Copolymers:Environmental Benefits of PPC, an Industrially Viable Catalyst[J]. Biotechnol J, 2010,5(11):1164-1180. doi: 10.1002/biot.201000134

    7. [7]

      Klaus S, Lehenmeier M W, Anderson C E. Recent Advances in CO2/Epoxide Copolymerization-New Strategies and Cooperative Mechanisms[J]. Coord Chem Rev, 2011,255(13/14):1460-1479.  

    8. [8]

      Qin Y, Sheng X, Liu S. Recent Advances in Carbon Dioxide Based Copolymers[J]. J CO2 Util, 2015,11:3-9. doi: 10.1016/j.jcou.2014.10.003

    9. [9]

      Kleij A W, North M, Urakawa A. CO2 Catalysis[J]. ChemSusChem, 2017,10(6):1036-1038. doi: 10.1002/cssc.201700218

    10. [10]

      Inoue S, Koinuma H, Tsuruta T. Copolymerization of Carbon Dioxide and Epoxide[J]. J Polym Sci Polym Lett, 1969,7(4):287-292. doi: 10.1002/pol.1969.110070408

    11. [11]

      Lu X, Darensbourg D J. Cobalt Catalysts for the Coupling of CO2 and Epoxides to Provide Polycarbonates and Cyclic Carbonates[J]. Chem Soc Rev, 2012,41(4):1462-84. doi: 10.1039/C1CS15142H

    12. [12]

      Qin Z, Thomas C M, Lee S. Cobalt-Based Complexes for the Copolymerization of Propylene Oxide and CO2:Active and Selective Catalysts for Polycarbonate Synthesis[J]. Angew Chem Int Ed, 2003,42(44):5484-5487. doi: 10.1002/anie.200352605

    13. [13]

      Nakano K, Kamada T K, Nozaki K. Selective Formation of Polycarbonate over Cyclic Carbonate:Copolymerization of Epoxides with Carbon Dioxide Catalyzed by a Cobalt(Ⅲ) Complex with a Piperidinium End-Capping Arm[J]. Angew Chem Int Ed, 2006,45(43):7274-7277. doi: 10.1002/anie.200603132

    14. [14]

      Sujith S, Min J K, Seong J E. A Highly Active and Recyclable Catalytic System for CO2/Propylene Oxide Copolymerization[J]. Angew Chem Int Edit, 2008,47(38):7306-7309. doi: 10.1002/anie.200801852

    15. [15]

      Liu S, Wang X. Polymers from Carbon Dioxide:Polycarbonates, Polyurethanes[J]. Curr Opin Green Sustainable Chem, 2017,3:61-66. doi: 10.1016/j.cogsc.2016.08.003

    16. [16]

      Ikpo N, Flogeras J C, Kerton F M. Aluminium Coordination Complexes in Copolymerization Reactions of Carbon Dioxide and Epoxides[J]. Dalton Trans, 2013,42(25):8998-9006. doi: 10.1039/c3dt00049d

    17. [17]

      Takeda N, Inoue S. Polymerization of 1, 2-Epoxypropane and Copolymerization with Carbon Dioxide Catalyzed by Metalloporphyrins[J]. Makromol Chem, 1978,179(5):1377-1381. doi: 10.1002/macp.1978.021790529

    18. [18]

      Jung J H, Ree M, Chang T. Copolymerization of Carbon Dioxide and Propylene Oxide Using an Aluminum Porphyrin System and Its Components[J]. J Polym Sci Polym Chem, 1999,37(16):3329-3336. doi: 10.1002/(SICI)1099-0518(19990815)37:16<3329::AID-POLA31>3.0.CO;2-Q

    19. [19]

      Zhuo C, Qin Y, Wang X. Steric Hindrance Ligand Strategy to Aluminum Porphyrin Catalyst for Completely Alternative Copolymerization of CO2 and Propylene Oxide[J]. Chinese J Polym Sci, 2017,36(2):252-260.  

    20. [20]

      Sheng X, Wu W, Qin Y. Efficient Synthesis and Stabilization of Poly(propylene carbonate) from Delicately Designed Bifunctional Aluminum Porphyrin Complexes[J]. Polym Chem, 2015,6(26):4719-4724. doi: 10.1039/C5PY00335K

    21. [21]

      Moore D R, Cheng M, Lobkovsky E B. Electronic and Steric Effects on Catalysts for CO2/Epoxide Polymerization:Subtle Modifications Resulting in Superior Activities[J]. Angew Chem Int Ed, 2002,41(14):2599-2602. doi: 10.1002/1521-3773(20020715)41:14<2599::AID-ANIE2599>3.0.CO;2-N

  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    10. [10]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    20. [20]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

Metrics
  • PDF Downloads(18)
  • Abstract views(1326)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return