Citation: QIU Yuming, JIANG Yihang, LU Guanghao. Application Progress of Doping in Organic Field-Effect Transistors[J]. Chinese Journal of Applied Chemistry, ;2019, 36(9): 977-995. doi: 10.11944/j.issn.1000-0518.2019.09.190141 shu

Application Progress of Doping in Organic Field-Effect Transistors

  • Corresponding author: LU Guanghao, guanghao.lu@mail.xjtu.edu.cn
  • Received Date: 15 May 2019
    Revised Date: 20 June 2019
    Accepted Date: 8 July 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.51473132, No.21574103), the China Postdoctoral Science Foundation(No.2015M580841, No.2016T90910)the China Postdoctoral Science Foundation 2016T90910the National Natural Science Foundation of China 51473132the National Natural Science Foundation of China 21574103the China Postdoctoral Science Foundation 2015M580841

Figures(19)

  • Organic field-effect transistors(OFETs) as a new type of electronic devices have attracted wide attention due to their flexibility and large scale and simple fabrication. However, OFETs are confronted with problems such as inadequate device performance and complex control methods. Researchers endeavor to solve these problems by doping. In this review, we summarize the application of doping technology in OFETs based on the related work of our group and prospect the future development.
  • 加载中
    1. [1]

      Shirakawa H, Louis E J, Macdiarmid A G. Synthesis of Electrically Conducting Organic Polymers-Halogen Derivatives of Polyacetylene, (CH)x[J]. J Chem Soc-Chem Commun, 1977(16):578-580. doi: 10.1039/c39770000578

    2. [2]

      Lussem B, Keum C M, Kasemann D. Doped Organic Transistors[J]. Chem Rev, 2016,116(22):13714-13751. doi: 10.1021/acs.chemrev.6b00329

    3. [3]

      Kahng D. Historical-perspective on Development of Mos-Transistors and Related Devices[J]. IEEE Trans Electron Devices, 1976,23(7):655-657. doi: 10.1109/T-ED.1976.18468

    4. [4]

      Koezuka H, Tsumura A, Ando T. Field-effect Transistor with Polythiophene Thin-film[J]. Synth Met, 1987,18(13):699-704.  

    5. [5]

      Bao Z E, Dodabalapur A, Lovinger A J. Soluble and Processable Regioregular Poly(3-hexylthiophene) for Thin Film Field-Effect Transistor Applications with High Mobility[J]. Appl Phys Lett, 1996,69(26):4108-4110. doi: 10.1063/1.117834

    6. [6]

      Fukuda H, Ise M, Kogure T. Gas Sensors Based on Poly-3-hexylthiophene Thin-film Transistors[J]. Thin Solid Films, 2004,464/465:441-444. doi: 10.1016/j.tsf.2004.06.004

    7. [7]

      Lu G H, Blakesley J, Himmelberger S. Moderate Doping Leads to High Performance of Semiconductor/insulator Polymer Blend Transistors[J]. Nat Commun, 2013,41588. doi: 10.1038/ncomms2587

    8. [8]

      Huang B C, Lin Y J. Effect of the Induced Electron Traps by Oxygen Plasma Treatment on Transfer Characteristics of Organic Thin Film Transistors[J]. Appl Phys Lett, 2011,99(11)113301. doi: 10.1063/1.3636411

    9. [9]

      Brown A R, Pomp A, Hart C M. Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators[J]. Science, 1995,270(5238):972-974. doi: 10.1126/science.270.5238.972

    10. [10]

      Drury C J, Mutsaers C M J, Hart C M. Low-Cost All-Polymer Integrated Circuits[J]. Appl Phys Lett, 1998,73(1):108-110. doi: 10.1063/1.121783

    11. [11]

      Someya T, Kato Y, Sekitani T. Conformable, Flexible, Large-Area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes[J]. Proc Natl Acad Sci USA, 2005,102(35):12321-12325. doi: 10.1073/pnas.0502392102

    12. [12]

      Tee B C K, Chortos A, Berndt A. A Skin-Inspired Organic Digital Mechanoreceptor[J]. Science, 2015,350(6258)313. doi: 10.1126/science.aaa9306

    13. [13]

      Wang S H, Xu J, Wang W H. Skin Electronics from Scalable Fabrication of an Intrinsically Stretchable Transistor Array[J]. Nature, 2018,555(7694):83-88. doi: 10.1038/nature25494

    14. [14]

      Kim D H, Lu N S, Ma R. Epidermal Electronics[J]. Science, 2011,333(6044):838-843. doi: 10.1126/science.1206157

    15. [15]

      Kaltenbrunner M, Sekitani T, Reeder J. An Ultra-lightweight Design for Imperceptible Plastic Electronics[J]. Nature, 2013,499(7459):458-463. doi: 10.1038/nature12314

    16. [16]

      Matsuhisa N, Kaltenbrunner M, Yokota T. Printable Elastic Conductors with a High Conductivity for Electronic Textile Applications[J]. Nat Commun, 2015,67461. doi: 10.1038/ncomms8461

    17. [17]

      Xu S, Zhang Y H, Jia L. Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin[J]. Science, 2014,344(6179):70-74. doi: 10.1126/science.1250169

    18. [18]

      Crone B, Dodabalapur A, Gelperin A. Electronic Sensing of Vapors with Organic Transistors[J]. Appl Phys Lett, 2001,78(15):2229-2231. doi: 10.1063/1.1360785

    19. [19]

      Torsi L, Dodabalapur A, Cioffi N. NTCDA Organic Thin-Film-Transistor as Humidity Sensor:Weaknesses and Strengths[J]. Sens Actuators B, 2001,77(1/2):7-11.

    20. [20]

      Guillaud G, Simon J, Germain J P. Metallophthalocyanines-Gas Sensors, Resistors and Field Effect Transistors[J]. Coordin Chem Rev, 1998,178:1433-1484.

    21. [21]

      Huang J, Miragliotta J, Becknell A. Hydroxy-Terminated Organic Semiconductor-Based Field-Effect Transistors for Phosphonate Vapor Detection[J]. JACS, 2007,129(30):9366-9376. doi: 10.1021/ja068964z

    22. [22]

      Lee B H, Bazan G C, Heeger A J. Doping-Induced Carrier Density Modulation in Polymer Field-Effect Transistors[J]. Adv Mater, 2016,28(1):57-62. doi: 10.1002/adma.201504307

    23. [23]

      Xu J, Wang S H, Wang J N. Highly Stretchable Polymer Semiconductor Films Through the Nanoconfinement Effect[J]. Science, 2017,355(6320):59-64. doi: 10.1126/science.aah4496

    24. [24]

      Lin Y Y, Gundlach D J, Nelson S F. Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics[J]. IEEE Electron Device Lett, 1997,18(12):606-608. doi: 10.1109/55.644085

    25. [25]

      Lee B H, Hsu B B, Patel S N. Flexible Organic Transistors with Controlled Nanomorphology[J]. Nano Lett, 2016,16(1):314-319. doi: 10.1021/acs.nanolett.5b03868

    26. [26]

      Bae I, Hwang S K, Kim R H. Wafer-Scale Arrays of Nonvolatile Polymer Memories with Microprinted Semiconducting Small Molecule/Polymer Blends[J]. ACS Appl Mater Interfaces, 2013,5(21):10696-10704. doi: 10.1021/am402852y

    27. [27]

      Tessler N, Preezant Y, Rappaport N. Charge Transport in Disordered Organic Materials and Its Relevance to Thin-Film Devices:A Tutorial Review[J]. Adv Mater, 2009,21(27):2741-2761. doi: 10.1002/adma.200803541

    28. [28]

      Scheinert S, Paasch G. Fabrication and Analysis of Polymer Field-Effect Transistors[J]. Phys Status Solidi A, 2004,201(6):1263-1301. doi: 10.1002/pssa.200404335

    29. [29]

      Braun S, Salaneck W R, Fahlman M. Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces[J]. Adv Mater, 2009,21(14/15):1450-1472.

    30. [30]

      Harada K, Riede M, Leo K. Pentacene Homojunctions:Electron and Hole Transport Properties and Related Photovoltaic Responses[J]. Phys Rev B, 2008,77(19)195215.  

    31. [31]

      Ha S D, Kahn A. Isolated Molecular Dopants in Pentacene Observed by Scanning Tunneling Microscopy[J]. Phys Rev B, 2009,80(19)195410. doi: 10.1103/PhysRevB.80.195410

    32. [32]

      Mityashin A, Olivier Y, Van Regemorter T. Unraveling the Mechanism of Molecular Doping in Organic Semiconductors[J]. Adv Mater, 2012,24(12):1535-1539. doi: 10.1002/adma.201104269

    33. [33]

      Oehzelt M, Koch N, Heimel G. Organic Semiconductor Density of States Controls the Energy Level Alignment at Electrode Interfaces[J]. Nat Commun, 2014,54174. doi: 10.1038/ncomms5174

    34. [34]

      Pahner P, Kleemann H, Burtone L. Pentacene Schottky Diodes Studied by Impedance Spectroscopy:Doping Properties and Trap Response[J]. Phys Rev B, 2013,88(19)195205. doi: 10.1103/PhysRevB.88.195205

    35. [35]

      Olthof S, Tress W, Meerheim R. Photoelectron Spectroscopy Study of Systematically Varied Doping Concentrations in an Organic Semiconductor Layer Using a Molecular P-Dopant[J]. J Appl Phys, 2009,106(10)103711. doi: 10.1063/1.3259436

    36. [36]

      Tietze M L, Pahner P, Schmidt K. Doped Organic Semiconductors:Trap-Filling, Impurity Saturation, and Reserve Regimes[J]. Adv Funct Mater, 2015,25(18):2701-2707. doi: 10.1002/adfm.201404549

    37. [37]

      Qiu Y M, Wei P, Wang Z H. Manipulating Doping of Organic Semiconductors by Reactive Oxygen for Field-Effect Transistors[J]. PSS-RRL, 2018,12(10)1800297.

    38. [38]

      Liu C, Li Y, Minari T. Forming Semiconductor/Dielectric Double Layers by One-Step Spin-Coating for Enhancing the Performance of Organic Field-Effect Transistors[J]. Org Electron, 2012,13(7):1146-1151. doi: 10.1016/j.orgel.2012.03.025

    39. [39]

      Lee J H, Leem D S, Kim J J. Effect of Host Organic Semiconductors on Electrical Doping[J]. Org Electron, 2010,11(3):486-489. doi: 10.1016/j.orgel.2009.12.002

    40. [40]

      Chan C Y H, Chow C M, So S K. Using Transistor Technique to Study the Effects of Transition Metal Oxide Dopants on Organic Charge Transporters[J]. Org Electron, 2011,12(8):1454-1458. doi: 10.1016/j.orgel.2011.04.023

    41. [41]

      Zhang D D, Feng J, Chen L. Role of Fe3O4 as a P-Dopant in Improving the Hole Injection and Transport of Organic Light-Emitting Devices[J]. IEEE J Quantum Electron, 2011,47(5):591-596. doi: 10.1109/JQE.2011.2107503

    42. [42]

      Maennig B, Pfeiffer M, Nollau A. Controlled P-Type Doping of Polycrystalline and Amorphous Organic Layers:Self-Consistent Description of Conductivity and Field-Effect Mobility by a Microscopic Percolation Model[J]. Phys Rev B, 2001,64(19)195208. doi: 10.1103/PhysRevB.64.195208

    43. [43]

      Rangger G M, Hofmann O T, Bröker B. A Particularly Strong Organic Acceptor for Tuning the Hole-Injection Barriers in Modern Organic Devices[J]. Synth Met, 2010,160(13/14):1456-1462.  

    44. [44]

      Pinto H, Jones R, Goss J P. P-Type Doping of Graphene with F4-TCNQ[J]. J Phys-Condens Mat, 2009,21(40)402001. doi: 10.1088/0953-8984/21/40/402001

    45. [45]

      Wei P, Hu Y P, Zhu Y W. Dopant/Semiconductor/Electret Tri-Layer Architecture for High-Performance Organic Field-Effect Transistors[J]. Adv Elect Mat, 2018,4(9)1800339. doi: 10.1002/aelm.201800339

    46. [46]

      Salzmann I, Heimel G, Oehzelt M. Molecular Electrical Doping of Organic Semiconductors:Fundamental Mechanisms and Emerging Dopant Design Rules[J]. Acc Chem Res, 2016,49(3):370-378. doi: 10.1021/acs.accounts.5b00438

    47. [47]

      Parthasarathy G, Shen C, Kahn A. Lithium Doping of Semiconducting Organic Charge Transport Materials[J]. J Appl Phys, 2001,89(9):4986-4992. doi: 10.1063/1.1359161

    48. [48]

      Kao P C, Lin J H, Wang J Y. Li2CO3 as an N-Type Dopant on Alq3-Based Organic Light Emitting Devices[J]. J Appl Phys, 2011,109(9)094505. doi: 10.1063/1.3585767

    49. [49]

      Kao P C, Wang J Y, Lin J H. Effects of the Na2CO3 Dopant on Electron Injection and Transport in Organic Light Emitting Devices[J]. Thin Solid Films, 2013,527:338-343. doi: 10.1016/j.tsf.2012.11.038

    50. [50]

      Goetz K P, Vermeulen D, Payne M E. Charge-Transfer Complexes:New Perspectives on an Old Class of Compounds[J]. J Mater Chem C, 2014,2(17):3065-3076. doi: 10.1039/C3TC32062F

    51. [51]

      Nollau A, Pfeiffer M, Fritz T. Controlled N-Type Doping of a Molecular Organic Semiconductor:Naphthalenetetracarboxylic Dianhydride(NTCDA) Doped with Bis. Ethylenedithio)-Tetrathiafulvalene(BEDT-TTF)[J]. J Appl Phys, 2000,87(9):4340-4343. doi: 10.1063/1.373413

    52. [52]

      Harada K, Werner A G, Pfeiffer M. Organic Homojunction Diodes with a High Built-In Potential:Interpretation of the Current-Voltage Characteristics by a Generalized Einstein Relation[J]. Phys Rev Lett, 2005,94(3)036601. doi: 10.1103/PhysRevLett.94.036601

    53. [53]

      Werner A G, Li F, Harada K. Pyronin B as a Donor for N-Type Doping of Organic Thin Films[J]. Appl Phys Lett, 2003,82(25):4495-4497. doi: 10.1063/1.1583872

    54. [54]

      Li F H, Werner A, Pfeiffer M. Leuco Crystal Violet as a Dopant for N-Doping of Organic Thin Films of Fullerene C-60[J]. J Phys Chem B, 2004,108(44):17076-17082. doi: 10.1021/jp0478615

    55. [55]

      Li C Z, Chueh C C, Ding F Z. Doping of Fullerenes via Anion-Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells[J]. Adv Mater, 2013,25(32):4425-4430. doi: 10.1002/adma.201300580

    56. [56]

      Ante F, Kalblein D, Zaki T. Contact Resistance and Megahertz Operation of Aggressively Scaled Organic Transistors[J]. Small, 2012,8(1):73-79. doi: 10.1002/smll.201101677

    57. [57]

      Hu Y Y, Li G D, Peng W. Comparing the Gate Dependence of Contact Resistance and Channel Resistance in Organic Field-Effect Transistors for Understanding the Mobility Overestimation Issue[J]. IEEE Electron Device Lett, 2018,39(3):421-423. doi: 10.1109/LED.2018.2798288

    58. [58]

      Liu C, Li G T, Di Pietro R. Device Physics of Contact Issues for the Overestimation and Underestimation of Carrier Mobility in Field-Effect Transistors[J]. Phys Rev Appl, 2017,8(3)034020. doi: 10.1103/PhysRevApplied.8.034020

    59. [59]

      Jung K D, Kim Y C, Kim B J. An Analytic Current-Voltage Equation for Top-Contact Organic Thin Film Transistors Including the Effects of Variable Series Resistance[J]. JPN J Appl Phys, 2008,47(4):3174-3178. doi: 10.1143/JJAP.47.3174

    60. [60]

      Blochwitz J, Fritz T, Pfeiffer M. Interface Electronic Structure of Organic Semiconductors with Controlled Doping Levels[J]. Org Electron, 2001,2(2):97-104. doi: 10.1016/S1566-1199(01)00016-7

    61. [61]

      Pfeiffer M, Leo K, Zhou X. Doped Organic Semiconductors:Physics and Application in Light Emitting Diodes[J]. Org Electron, 2003,4(2/3):89-103.  

    62. [62]

      Singh S, Mohapatra S K, Sharma A. Reduction of Contact Resistance by Selective Contact Doping in Fullerene N-Channel Organic Field-Effect Transistors[J]. Appl Phys Lett, 2013,102(15)153303. doi: 10.1063/1.4802237

    63. [63]

      Chen Y, Shih I, Xiao S. Effects of FeCl3 Doping on Polymer-Based Thin Film Transistors[J]. J Appl Phys, 2004,96(1):454-458. doi: 10.1063/1.1760838

    64. [64]

      Günther A A, Sawatzki M, Formánek P. Contact Doping for Vertical Organic Field-Effect Transistors[J]. Adv Funct Mater, 2016,26(5):768-775. doi: 10.1002/adfm.201504377

    65. [65]

      Tiwari S P, Potscavage W J, Sajoto T. Pentacene Organic Field-Effect Transistors with Doped Electrode-Semiconductor Contacts[J]. Org Electron, 2010,11(5):860-863. doi: 10.1016/j.orgel.2010.01.029

    66. [66]

      Abe Y, Hasegawa T, Takahashi Y. Control of Threshold Voltage in Pentacene Thin-Film Transistors Using Carrier Doping at the Charge-Transfer Interface with Organic Acceptors[J]. Appl Phys Lett, 2005,87(15)153506. doi: 10.1063/1.2099540

    67. [67]

      Zhao W, Qi Y B, Sajoto T. Remote Doping of a Pentacene Transistor:Control of Charge Transfer by Molecular-Level Engineering[J]. Appl Phys Lett, 2010,97(12)123305. doi: 10.1063/1.3491429

    68. [68]

      Marchl M, Edler M, Haase A. Tuning the Threshold Voltage in Organic Thin-Film Transistors by Local Channel Doping Using Photoreactive Interfacial Layers[J]. Adv Mater, 2010,22(47):5361-5365. doi: 10.1002/adma.201002912

    69. [69]

      Luessem B, Tietze M L, Kleemann H. Doped Organic Transistors Operating in the Inversion and Depletion Regime[J]. Nat Commun, 2013,42775. doi: 10.1038/ncomms3775

    70. [70]

      Patel S N, Glaudell A M, Kiefer D. Increasing the Thermoelectric Power Factor of a Semiconducting Polymer by Doping from the Vapor Phase[J]. ACS Macro Lett, 2016,5(3):268-272. doi: 10.1021/acsmacrolett.5b00887

    71. [71]

      Zhuang Y, de Boer B, Blom P W M. Controllable Molecular Doping and Charge Transport in Solution-Processed Polymer Semiconducting Layers[J]. Adv Funct Mater, 2009,19(12):1901-1905. doi: 10.1002/adfm.200801761

    72. [72]

      Kleemann H, Schuenemann C, Zakhidov A A. Structural Phase Transition in Pentacene Caused by Molecular Doping and Its Effect on Charge Carrier Mobility[J]. Org Electron, 2012,13(1):58-65. doi: 10.1016/j.orgel.2011.09.027

    73. [73]

      Gao J, Roehling J D, Li Y L. The Effect of 2, 3, 5, 6-Tetrafluoro-7, 7, 8, 8-Tetracyanoquino-Dimethane Charge Transfer Dopants on the Conformation and Aggregation of Poly(3-Hexylthiophene)[J]. J Mater Chem C, 2013,1(36):5638-5646. doi: 10.1039/c3tc31047g

    74. [74]

      Zhang F J, Dai X J, Zhu W K. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors[J]. Adv Mater, 2017,29(27)1700411. doi: 10.1002/adma.201700411

    75. [75]

      Chen Z Y, Lee M J, Ashraf R S. High-Performance Ambipolar Diketopyrrolopyrrole-Thieno 3, 2-B Thiophene Copolymer Field-Effect Transistors with Balanced Hole and Electron Mobilities[J]. Adv Mater, 2012,24(5):647-652. doi: 10.1002/adma.201102786

    76. [76]

      Li J, Zhao Y, Tan H S. A Stable Solution-Processed Polymer Semiconductor with Record High-Mobility for Printed Transistors[J]. Sci Rep, 2012,2754. doi: 10.1038/srep00754

    77. [77]

      Pfeiffer M, Beyer A, Fritz T. Controlled Doping of Phthalocyanine Layers by Co-sublimation with Acceptor Molecules:A Systematic Seebeck and Conductivity Study[J]. Appl Phys Lett, 1998,73(22):3202-3204. doi: 10.1063/1.122718

    78. [78]

      Roelofs W S C, Spijkman M J, Mathijssen S G J. Fundamental Limitations for Electroluminescence in Organic Dual-Gate Field-Effect Transistors[J]. Adv Mater, 2014,26(26):4450-4455. doi: 10.1002/adma.201305215

    79. [79]

      Brinkmann M, Videva V S, Bieber A. Electronic and Structural Evidences for Charge Transfer and Localization in Iodine-Doped Pentacene[J]. J Phys Chem A, 2004,108(40):8170-8179. doi: 10.1021/jp048343x

    80. [80]

      Minakata T, Imai H, Ozaki M. Electrical-Properties of Highly Ordered and Amorphous Thin-Films of Pentacene Doped with Iodine[J]. J Appl Phys, 1992,72(9):4178-4182. doi: 10.1063/1.352227

    81. [81]

      Kim J A, Seong D G, Kang T J. Effects of Surface Modification on Rheological and Mechanical Properties of CNT/Epoxy Composites[J]. Carbon, 2006,44(10):1898-1905. doi: 10.1016/j.carbon.2006.02.026

    82. [82]

      Nadazdy V, Durny R, Puigdollers J. Experimental Observation of Oxygen-Related Defect State in Pentacene Thin Films[J]. Appl Phys Lett, 2007,90(9)092112. doi: 10.1063/1.2710203

    83. [83]

      Knipp D, Muck T, Benor A. Environmental Stability and Electronic Transport of Pentacene Thin Film Transistors[J]. J Non-Cryst Solids, 2006,352(9-20):1774-1777. doi: 10.1016/j.jnoncrysol.2005.11.145

    84. [84]

      ZHANG Yumei, PEI Jian. Progress on Synthesis of Polycyclic Hydrocarbons Based on Benzo[J]. Chinese J Appl Chem, 2010,27(5):497-504.  

    85. [85]

      Huang B C, Lin Y J. Effect of the Induced Electron Traps by Oxygen Plasma Treatment on Transfer Characteristics of Organic Thin Film Transistors[J]. Appl Phys Lett, 2011,99(11)113301. doi: 10.1063/1.3636411

    86. [86]

      Choi J, Joo M, Seong H. Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-K, Ultrathin Polymer Gate Dielectrics[J]. ACS Appl Mater Interfaces, 2017,9(24):20808-20817. doi: 10.1021/acsami.7b03537

    87. [87]

      Zschieschang U, Klauk H. Low-Voltage Organic Transistors with Steep Subthreshold Slope Fabricated on Commercially Available Paper[J]. Org Electron, 2015,25:340-344. doi: 10.1016/j.orgel.2015.06.038

    88. [88]

      Zhao J Q, Tang W, Li Q F. Fully Solution Processed Bottom-Gate Organic Field-Effect Transistor with Steep Subthreshold Swing Approaching the Theoretical Limit[J]. IEEE Electron Device Lett, 2017,38(10):1465-1468. doi: 10.1109/LED.2017.2742952

    89. [89]

      WU Jiang, XIE Zhiyuan, GUO Shijie. Effects of Substrate Temperature on Morphology and Photovoltaic Cell Performance of P3HT:PCBM Thin Film Fabricated by Doctor-Blading Technique[J]. Chinese J Appl Chem, 2012,29(12):1417-1422.  

    90. [90]

      SUN Yue, LIU Jiangang, GENG Yanhou. Morphological Manipulation of P3HT/PCBM Blend Thin Films by Using Compatibilizers[J]. Chinese J Appl Chem, 2012,29(12):1399-1405.  

    91. [91]

      LI Sijun, WANG Sisi, ZHANG Baohua. Effect of Functional End Group on Optoelectronic Properties of Poly(3-butylthiophene)[J]. Chinese J Appl Chem, 2014,31(1):20-24.  

  • 加载中
    1. [1]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    11. [11]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    12. [12]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(6)
  • Abstract views(593)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return