Citation: GAO Bo, YANG Hongwei, TIAN Shaopeng, ZHAO Yuzhen, Tian TIAN. Solubility Properties of 1-Alkyl-4-amino-1, 2, 4-triazolium Energetic Ionic Liquids[J]. Chinese Journal of Applied Chemistry, ;2019, 36(9): 1044-1052. doi: 10.11944/j.issn.1000-0518.2019.09.190036 shu

Solubility Properties of 1-Alkyl-4-amino-1, 2, 4-triazolium Energetic Ionic Liquids

  • Corresponding author: GAO Bo, gaoboo_1989@126.com Tian TIAN, tiantian19860102@126.com
  • Received Date: 13 February 2019
    Revised Date: 25 April 2019
    Accepted Date: 28 May 2019

    Fund Project: the Special Scientific Research Project of Shaanxi Provincial Education Department 18Jk1205the Natural Science Foundation Youth Fund Project of Hebei E2018402211Supported by the Special Scientific Research Project of Shaanxi Provincial Education Department(No.18Jk1205), and the Natural Science Foundation Youth Fund Project of Hebei(No. E2018402211)

Figures(11)

  • Based on NO3-, ClO4-, N(CN)2-, [2, 4, 5-TNI]-, [3, 5-DNTZ]- anions, a series of 1-alkyl-4-amino-1, 2, 4-triazolium energetic ionic liquids(EILs) were synthesized. The structures were characterized by 1H NMR spectroscopy. The interaction energies of EILs-solvents and dipole moment of the 1-alkyl-4-amino-1, 2, 4-triazolium EILs were calculated using ab initio at MP2/6-311G++(2d, p). The relationships between the solubility and molecular structure, common solvents, and the interaction energies of EILs-solvents, etc., were discussed systematically. The results showed that the|ΔE|between[BATZ]NO3 and water had the biggest value of 40.7 kJ/mol with the different cations and the|ΔE|of[BATZ] [3, 5-DNTZ] and water possessed the biggest value of 45.1 kJ/mol with the same cation. The dipole moment of the above EILs was in the following order:[BATZ] [3, 5-DNTZ] > [BATZ] [2, 4, 5-TNI] > [BATZ]N(CN)2 > [BATZ]ClO4 > [RATZ]NO3. The solubility of the title energetic ionic liquids increased with decreasing dielectric constant of solvent. With the increase of the alkyl chain length, the interaction energies of EILs-solvents, the anion size, and the solubility in polar solvents all decreased. The solubility in polar solvents was in the following order:[BATZ] [3, 5-DNTZ] > [BATZ] [2, 4, 5-TNI] > [BATZ]NO3 > [BATZ]ClO4 > [BATZ]N(CN)2 > [PATZ]NO3 > [HATZ]NO3 > [DATZ]NO3, and[BATZ] [2, 4, 5-TNI] had the highest solubility of 10.0327 g/10 g in water.
  • 加载中
    1. [1]

      Tian T, Hu X L, Guan P. Synthesis and Physicochemical Properties of L-(+)-α-(positive butyl)-leucine Ethyl Ester Chiral Ionic Liquids[J]. J Wuhan Univ Technol Mater(Sci Ed), 2018,33:249-255. doi: 10.1007/s11595-018-1813-0

    2. [2]

      Lethesh K C, Shah S N, Mutalib M I A. Synthesis, Characterization, and Thermophysical Properties of 1, 8-Diazobicyclo[5.4.0] undec-7-ene Based Thiocyanate Ionic Liquids[J]. J Chem Eng Data, 2014,59(6):1788-1795. doi: 10.1021/je400991s

    3. [3]

      Pereiro A B, Araújo J M M, Martinho S. Fluorinated Ionic Liquids:Properties and Applications[J]. ACS Sustainbale Chem Eng, 2013,1(4):427-439. doi: 10.1021/sc300163n

    4. [4]

      Mora-Pale M, Meli L, Doherty T V. Room Temperature Ionic Liquids as Emerging Solvents for the Pretreatment of Lignocellulosic Biomass[J]. Biotechnol Bioeng, 2011,108(6):1229-1245. doi: 10.1002/bit.23108

    5. [5]

      Yan H Y, Liu S T, Gao M M. Ionic Liquids Modified Dummy Molecularly Imprinted Microspheres as Solid Phase Extraction Materials for the Determination of Clenbuterol and Clorprenaline in Urine[J]. J Chromatogr A, 2013,1294:10-16. doi: 10.1016/j.chroma.2013.04.024

    6. [6]

      Khalafi-Nezhad A, Mohammadi S. Magnetic, Acidic, Ionic Liquid-Catalyzed One-Pot Synthesis of Spirooxindoles[J]. ACS Comb Sci, 2013,15(9)512. doi: 10.1021/co400080z

    7. [7]

      Lethesh K C, Shah S N, Mutalib M I A. Synthesis, Characterization, and Thermophysical Properties of 1, 8-Diazobicyclo[5.4.0] undec-7-ene Based Thiocyanate Ionic Liquids[J]. J Chem Eng Data, 2014,59(6):17-1795. doi: 10.1021/je400991s

    8. [8]

      Zhan Z, Salih A A M, Li M. Synthesis and Characterization of Functionalized Ionic Liquids for Thermal Storage[J]. Energy Fuels, 2014,28(4):2802-2810. doi: 10.1021/ef402401d

    9. [9]

      Doherty A P, Diaconu L, Marley E. Application of Clean Technologies Using Electrochemistry in Ionic Liquids[J]. Asia-Pac J Chem Eng, 2012,7(1):14-23. doi: 10.1002/apj.529

    10. [10]

      Xue H, Shreeve J. Energetic Ionic Liquids from Azido Derivatives of 1, 2, 4-Triazole[J]. Adv Mater, 2005,17(17):2142-2146. doi: 10.1002/adma.200500789

    11. [11]

      Drake G, Kaplan G, Hall L. A New Family of Energetic Ionic Liquids 1-Amino-3-alkyl-1, 2, 3-triazolium Nitrates[J]. J Chem Crystallogr, 2007,37(1):15-23.  

    12. [12]

      Meyer D, Strassner T. 1, 2, 4-Triazole-Based Tunable Aryl/Alkyl Ionic Liquids[J]. J Org Chem, 2011,76(1):305-308. doi: 10.1021/jo101784v

    13. [13]

      Tian T, Hu X L, Guan P. Density and Thermodynamic Performance of Energetic Ionic Liquids Based on 1-alkyl/esteryl-4-amino-1, 2, 4-triazolium[J]. Elsevier:J Mol Liq, 2017,248:70-80. doi: 10.1016/j.molliq.2017.09.024

    14. [14]

      Tao G H, Guo Y, Joo Y H. Energetic Nitrogen-Rich Salts and Ionic Liquids:5-Aminotetrazole(AT) as a Weak Acid[J]. J Mater Chem, 2008,18(45)5524. doi: 10.1039/b811506k

    15. [15]

      Sippel P, Lunkenheimer P, Krohns S. Importance of Liquid Fragility for Energy Applications of Ionic Liquids[J]. Sci Rep, 2015,513922. doi: 10.1038/srep13922

    16. [16]

      Zhang Q, Shreeve , Jean'ne M. Energetic Ionic Liquids as Explosives and Propellant Fuels:A New Journey of Ionic Liquid Chemistry[J]. Chem Rev, 2014,114(20):10527-10574. doi: 10.1021/cr500364t

    17. [17]

      Sebastiao E, Cook C, Hu A. Recent Developments in the Field of Energetic Ionic Liquids[J]. J Mater Chem A, 2014,2(22)8153. doi: 10.1039/C4TA00204K

    18. [18]

      Xue L, Zhao F Q, Xing X L. Thermal Behavior of 3, 4, 5-Triamino-1, 2, 4-triazole Dinitramide[J]. J Therm Anal Calorim, 2010,102(3):989-992. doi: 10.1007/s10973-010-0752-6

    19. [19]

      Pimienta I S, Elzey S, Boatz J A. Pentazole-Based Energetic Ionic Liquids:A Computational Study[J]. J Phys Chem A, 2007,111(4):691-703. doi: 10.1021/jp0663006

    20. [20]

      Lozano P, Manuel Martínez-Sánchez. Ionic Liquid Ion Sources:Characterization of Externally Wetted Emitters[J]. J Colloid Interface Sci, 2005,282(2):415-421. doi: 10.1016/j.jcis.2004.08.132

    21. [21]

      Ghatee M H, Bahrami M, Khanjari N. A Functionalized High-Surface-Energy Ammonium-Based Ionic Liquid:Experimental Measurement of Viscosity, Density, and Surface Tension of (2-Hydroxyethyl)[J]. J Chem Eng Data, 2012,57(8):2095-2101. doi: 10.1021/je201055w

    22. [22]

      Klomfar J, Součková M, Paátek J. Surface Tension and p-ρ-T Data for 1, 1, 1, 3, 3-Pentafluorobutane(HFC-365mfc) and 1, 1, 1, 2, 2, 3, 3-Heptafluoro-3-methoxy-propane(HFE-347mcc)[J]. J Chem Eng Data, 2013,58(8):2316-2325. doi: 10.1021/je4004542

    23. [23]

      Idris A, Vijayaraghavan R, Patti A F. Distillable Protic Ionic Liquids for Keratin Dissolution and Recovery[J]. ACS Sustainable Chem Eng, 2014,2(7):1888-1894. doi: 10.1021/sc500229a

    24. [24]

      Tian T, Hu X L, Guan P. Investigation of Surface and Solubility Properties of, N, -Vinylimidazolium Tetrahalogenidoferrate(Ⅲ) Magnetic Ionic Liquids Using Density Functional Theory[J]. J Chem Eng Data, 2016,61:721-730. doi: 10.1021/acs.jced.5b00395

    25. [25]

      Tian T, Hu X L, Guan P. Research on Solubility and Bio-solubility of Amino Acids Ionic Liquids[J]. J Mol Liq, 2016225.  

    26. [26]

      YANG Keming, CAO Duanlin, LI Yongxiang. Preparation of 3, 5-Dinitro-1, 2, 4-triazole Salt[J]. Tianjin Chem Ind, 2011,25(01):18-22. doi: 10.3969/j.issn.1008-1267.2011.01.007

    27. [27]

      HOU Kehui, LIU Zuliang, ZHANG Huayan. Synthesis and Performance of Ammonium 2, 4, 5-Trinitroimidazole[J]. Chinese J Energ Mater, 2013,21:16-18. doi: 10.3969/j.issn.1006-9941.2013.01.004

    28. [28]

      Katritzky A R, Singh S, Kirichenko K. 1-Butyl-3-methylimidazolium 3, 5-Dinitro-1, 2, 4-triazolate:A Novel Ionic Liquid Containing a Rigid, Planar Energetic Anion[J]. Chem Commun, 2005(7):868-870. doi: 10.1039/b414683b

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    12. [12]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    16. [16]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

Metrics
  • PDF Downloads(5)
  • Abstract views(426)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return