One-Step Synthesis of TiO2-Au Composite and Its Performance for Photocatalytic Hydrogen Evolution
- Corresponding author: LIU Bing, liubing7100@126.com
Citation:
LIU Bing, GONG Huili, LIU Rui, HU Changwen. One-Step Synthesis of TiO2-Au Composite and Its Performance for Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Applied Chemistry,
;2019, 36(9): 1076-1084.
doi:
10.11944/j.issn.1000-0518.2019.09.190017
Carrette L, Friedrieh K A, Stimming U. Fuel Cells:Principles, Types, Fuels, and Applications[J]. Chem Phys, 2000,1:162-193.
Tada H, Teranishi K, Inubushi Y. Ag Nanocluster Loading Effect an TiO2 Photocatalytic Reduction of Bis(2-bipyridyl)disulfide to 2-Mercaptopyridine by H2O[J]. Langmuir, 2000,16(7):3304-330. doi: 10.1021/la991315z
Naoi K, Ohko Y, Tatsuma T. TiO2 Films Loaded with Silver Nanoparticles:Control of Multicolor Photochromic Behavior[J]. J Am Chem Soc, 2004,126(11):3664-366. doi: 10.1021/ja039474z
Subramanian V, Wolf E E, Kamat P V. Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2-Au Composite Nanoparticles[J]. Langmuir, 2003,19(2):469-474. doi: 10.1021/la026478t
He J H, Ichinose I, Kunitake T. Facile Fabrication of Ag-Pd Bimetallic Nanoparticles in Ultrathin TiO2-gel Films:Nanoparticle Morphology and Catalytic Activity[J]. J Am Chem Soc, 2003,125(36):11034-1104. doi: 10.1021/ja035970b
Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238(S8):37-38.
GAO Lian, ZHENG Shan, ZHANG Qinghong. Photocatalytic Material of Nano-Titanium Oxide and Its Application[M]. Beijing:Chemical Industry Press, 2002(in Chinese).
Ho W, Yu C Y, Lee S. Synthesis of Hierarchical Nanoporous F-doped TiO2 Spheres with Visible Light Photocatalytic Activity[J]. Chem Commun, 2006,10:1115-1117.
Hamad S, Catlow C R A, Woodley S M. Structure and Stability of Small TiO2 Nanoparticles[J]. Small, 2005,1(8/9):812-816. doi: 10.1021/jp0521914
Li Y, Kunitake T, Fujikawa S. Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres[J]. J Phys Chem B, 2006,110:13000-13004. doi: 10.1021/jp061979z
Rengarajan R, Jiang P, Colvin V. Optical Properties of a Photonic Crystal of Hollow Spherical Shells[J]. Appl Phys Lett, 2000,77:3517-3519. doi: 10.1063/1.1320863
Jiang P, Bertone J F, Colvin V L. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals[J]. Science, 2001,291(5503):453-457. doi: 10.1126/science.291.5503.453
Caruso F, Caruso R A, Möhwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998,282:1111-1114. doi: 10.1126/science.282.5391.1111
Zhong Z Y, Yin Y D, Gates B. Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads[J]. Adv Mater, 2000,12:206-209. doi: 10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
Caruso F, Shi X Y, Rachel A. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J]. Adv Mater, 2001,13:740-744. doi: 10.1002/1521-4095(200105)13:10<740::AID-ADMA740>3.0.CO;2-6
Imholf A. Preaparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shell[J]. Langmuir, 2001,17(12):3579-3585. doi: 10.1021/la001604j
Wang L, Sasaki T, Ebina Y. Fabrication of Controllable Ultrathin Hollow Shellsby Layer-by-Layer Assembly of Exfoliated Titania Nanosheets on Polymer Templates[J]. Chem Mater, 2002,14:4827-4832. doi: 10.1021/cm020685x
Cheng X J, Chen M, Wu L M. Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres[J]. Langmuir, 2006,22:385-386. doi: 10.1021/la051549k
Lia G C, Zhang Z K. Synsthesis of Submicrometer-Sized Hollow Titania Spheres with Controllable Shells[J]. Mater Lett, 2004,58:2768-2771. doi: 10.1016/j.matlet.2004.04.031
Shen W H, Zhu Y F, Dong X P. A New Strategy to Synthesize TiO2-Hollow Spheres Using Carbon Spheres as Template[J]. Chem Lett, 2005,34(6):840-841. doi: 10.1246/cl.2005.840
Li D G, Luo L L, Chen J F. Synthesis of Hollow Titania Using Nanosized Calcium Carbonate as a Template[J]. Chem Lett, 2005,34:138-140. doi: 10.1246/cl.2005.138
Sugimoto T, Zhou X, Muramatsu A. Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel-Sol Method:4.Shape Control[J]. J Colloid Interf Sci, 2003,259(1):53-61. doi: 10.1016/S0021-9797(03)00035-3
Shklover V, Nazeeruddin M K, Zakeeruddin S M. Structure of Nanocrystalline TiO2 Powders and Precursor to Their Highly Efficient Photosensitizer[J]. Chem Mater, 1997,9(2):430-439. doi: 10.1021/cm950502p
Burnside S D, Shklover V, Barbe C. Self-organization of TiO2 Nanoparticles in Thin films[J]. Chem Mater, 1998,10(9):2419-2425. doi: 10.1021/cm980702b
Lu S W, Harris C, Walck S. Phase Sensitivity of Raman Spectroscopy Analysis of CVD Titania Thin Films[J]. J Mater Sci, 2009,44(2):541-544. doi: 10.1007/s10853-008-3086-z
Hardwich L J, Holzapfel M, Novak P. Electrochemical Lithium Insertion into Anatase-type TiO2:An in Situ Raman Microscopy Investigation[J]. Electrochim Acta, 2007,52(17):5357-5367. doi: 10.1016/j.electacta.2007.02.050
Ohsaka T, Izumi F, Fujiki Y. Raman Spectrum of Anatase, TiO2[J]. J Raman Spectrosc, 1978,7(6):321-324. doi: 10.1002/jrs.1250070606
Miao L, Tanemura S, Toh S. Fabrication, Characterization and Raman Study of Anatase-TiO2 Nanorods by a Heating-sol-gel Template Process[J]. J Cryst Growth, 2004,264(1/2/3):246-252.
Yang L, Jiang X, Ruan W. Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles:Charge-Transfer Contributio[J]. J Phys Chem C, 2008,112(50):20095-20098. doi: 10.1021/jp8074145
Liu B, Boercker J E, Aydil E S. Oriented Single Crystalline Titanium Dioxide Nanowires[J]. Nanotechnology, 2008,19(50):505604-505610. doi: 10.1088/0957-4484/19/50/505604
SHI Erwei, CHEN Zhizhan, YUAN Rulin. Hydrothermal Crystallography[M]. Beijing:Science Press, 2004:86-106(in Chinese).
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
a.TiO2-Au0.059; b.TiO2-Au0.118; c.TiO2-Au0.177; d.TiO2-Au0.236
A-D corresponds to TiO2-Au0.059, TiO2-Au0.118, TiO2-Au0.177 and TiO2-Au0.236, respectively, and energy dispersive spectrum of TiO2-Au0.177 in image C
A.Au4f; B.Ti4+2p
a.TiO2-Au0.059; b.TiO2-Au0.118; c.TiO2-Au0.177; d.TiO2-Au0.236; e.TiO2
a.TiO2-Au0.059; b.TiO2-Au0.118; c.TiO2-Au0.177; d.TiO2-Au0.236; e.TiO2
a.TiO2-Au0.059; b.TiO2-Au0.118; c.TiO2-Au0.177; d.TiO2-Au0.236; e.TiO2
The illustration in B is the mass spectrum of formaldehyde