Citation: HU Yupeng, LU Guanghao. Research Progress on the Effect of Space Charge Distribution of Organic Semiconductor Thin Films on Transistor Performance[J]. Chinese Journal of Applied Chemistry, ;2019, 36(8): 855-881. doi: 10.11944/j.issn.1000-0518.2019.08.190142 shu

Research Progress on the Effect of Space Charge Distribution of Organic Semiconductor Thin Films on Transistor Performance

  • Corresponding author: LU Guanghao, guanghao.lu@mail.xjtu.edu.cn
  • Received Date: 16 May 2019
    Revised Date: 4 June 2019
    Accepted Date: 5 June 2019

    Fund Project: the National Natural Science Foundation of China 51473132the National Natural Science Foundation of China 51873172Supported by the National Natural Science Foundation of China(No.51873172, No.51473132)

Figures(29)

  • Organic field effect transistors(OFETs) are the basic components of the next generation of flexible electronics industry, which are bendable, transparent and solution-processible, and gradually begin to be applied to biosensors, flexible display and other fields. However, OFETs still have problems such as small operating current, small transconductance, low switching ratio, and poor air stability, which limits their further development. The performance of OFETs devices is mainly affected by the distribution of charge and current in the conductive channel. If the charge and current distribution in the channel are properly controlled by external means, it is possible to obtain a device with higher performance or new mechanism. The latest progress on this field is reviewed and prospected, which includes the recent result from our group.
  • 加载中
    1. [1]

      Shirakawa H, Louis E J, MacDiarmid A G. Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene, (CH)x[J]. J Chem Soc, Chem Commun, 1977(16):578-580. doi: 10.1039/c39770000578

    2. [2]

      Hebner T, Wu C, Marcy D. Ink-Jet Printing of Doped Polymers for Organic Light Emitting Devices[J]. Appl Phys Lett, 1998,72(5):519-521. doi: 10.1063/1.120807

    3. [3]

      Hammock M L, Chortos A, Tee B C. 25th Anniversary Article:The Evolution of Electronic Skin(e-skin):A Brief History, Design Considerations, and Recent Progress[J]. Adv Mater, 2013,25(42):5997-6038. doi: 10.1002/adma.201302240

    4. [4]

      Fei Z, Han Y, Gann E. Alkylated Selenophene-Sased Ladder-Type Monomers via a Facile Route for High-Performance Thin-Film Transistor Applications[J]. J Am Chem Soc, 2017,139(25):8552-8561. doi: 10.1021/jacs.7b03099

    5. [5]

      Oh J Y, Rondeau-Gagne S, Chiu Y C. Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors[J]. Nature, 2016,539(7629):411-415. doi: 10.1038/nature20102

    6. [6]

      Jeong Y J, Yun D J, Noh S H. Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories[J]. ACS Nano, 2018,12(8):7701-7709. doi: 10.1021/acsnano.8b01413

    7. [7]

      Venkateshvaran D, Nikolka M, Sadhanala A. Approaching Disorder-Free Transport in High-Mobility Conjugated Polymers[J]. Nature, 2014,515(7527):384-388. doi: 10.1038/nature13854

    8. [8]

      Lin Y, Wang J, Zhang Z G. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Adv Mater, 2015,27(7):1170-1174. doi: 10.1002/adma.201404317

    9. [9]

      MENG Jingjia, ZHANG Feng, REN Yandong. Halide Perovskite Based Two-Dimensional Nanocrystals:Synthesis and Luminescence Properties[J]. Chinese J Appl Chem, 2018,35(3):342-350.  

    10. [10]

      Yang J, Huang J, Li Q. Blue AIEgens:Approaches to Control the Intramolecular Conjugation and the Optimized Performance of OLED Devices[J]. J Mater Chem C, 2016,4(14):2663-2684. doi: 10.1039/C5TC03262H

    11. [11]

      LIU Weiqiang, CUI Rongzhen, WU Ruixia. Recent Progress on Blue Delayed Fluorescent Materials and Devices[J]. Chinese J Appl Chem, 2019,36(1):1-9.  

    12. [12]

      Bahadur J, Ghahremani A H, Martin B. Solution Processed Mo doped SnO2 as an Effective ETL in the Fabrication of Low Temperature Planer Perovskite Solar Cell under Ambient Conditions[J]. Org Electron, 2019,67:159-167. doi: 10.1016/j.orgel.2019.01.027

    13. [13]

      Krebs F C, Gevorgyan S A, Alstrup J. A Roll-to-Roll Process to Flexible Polymer Solar Cells:Model Studies, Manufacture and Operational Stability Studies[J]. J Mater Chem, 2009,19(30).  

    14. [14]

      Dodabalapur A, Bao Z, Makhija A. Organic Smart Pixels[J]. Appl Phys Lett, 1998,73(2):142-144. doi: 10.1063/1.121736

    15. [15]

      Zhou L, Wanga A, Wu S C. All-Organic Active Matrix Flexible Display[J]. Appl Phys Lett, 2006,88(8)083502.  

    16. [16]

      Myny K, Steudel S, Smout S. Organic RFID Transponder Chip with Data Rate Compatible with Electronic Product Coding[J]. Org Electron, 2010,11(7):1176-1179. doi: 10.1016/j.orgel.2010.04.013

    17. [17]

      Yoo D, Song Y, Jang J. Vertically Stacked Microscale Organic Nonvolatile Memory Devices Toward Three-Dimensional High Integration[J]. Org Electron, 2015,21:198-202. doi: 10.1016/j.orgel.2015.03.023

    18. [18]

      Su W P, Schrieffer J R, Heeger A J. Solitons in Polyacetylene[J]. Phys Rev Lett, 1979,42(25):1698-1701. doi: 10.1103/PhysRevLett.42.1698

    19. [19]

      Horowitz G, Hajlaoui R, Delannoy P. Temperature Dependence of the Field-Effect Mobility of Sexithiophene. Determination of the Density of Traps[J]. J Phys Ⅲ, 1995,5(4):355-371.

    20. [20]

      Bässler H. Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study[J]. Phys Status Solidi B, 1993,175(1):15-56.  

    21. [21]

      Arkhipov V, Heremans P, Emelianova E. Charge Carrier Mobility in Doped Disordered Organic Semiconductors[J]. J Non-Cryst Solids, 2004,338:603-606.  

    22. [22]

      Hunter S, Mottram A D, Anthopoulos T D. Temperature and Composition-Dependent Density of States in Organic Small-Molecule/Polymer Blend Transistors[J]. J Appl Phys, 2016,120(2)025502. doi: 10.1063/1.4955282

    23. [23]

      Diemer P J, Lamport Z A, Mei Y. Quantitative Analysis of the Density of Trap States at the Semiconductor-Dielectric Interface in Organic Field-Effect Transistors[J]. Appl Phys Lett, 2015,107(10)103303. doi: 10.1063/1.4930310

    24. [24]

      Pasveer W, Cottaar J, Tanase C. Unified Description of Charge-Carrier Mobilities in Disordered Semiconducting Polymers[J]. Phys Rev Lett, 2005,94(20)206601. doi: 10.1103/PhysRevLett.94.206601

    25. [25]

      Tanase C, Meijer E, Blom P. Unification of the Hole Transport in Polymeric Field-Effect Transistors and Light-Emitting Diodes[J]. Phys Rev Lett, 2003,91(21)216601. doi: 10.1103/PhysRevLett.91.216601

    26. [26]

      Tanase C, Meijer E, Blom P. Local Charge Carrier Mobility in Disordered Organic Field-Effect Transistors[J]. Org Electron, 2003,4(1):33-37. doi: 10.1016/S1566-1199(03)00006-5

    27. [27]

      Tsumura A, Koezuka H, Ando T. Macromolecular Electronic Device:Field-Effect Transistor with a Polythiophene Thin Tilm[J]. Appl Phys Lett, 1986,49(18):1210-1212. doi: 10.1063/1.97417

    28. [28]

      Sirringhaus H. 25th Anniversary Article:Organic Field-Effect Transistors:The Path Beyond Amorphous Silicon[J]. Adv Mater, 2014,26(9):1319-1335. doi: 10.1002/adma.201304346

    29. [29]

      Horowitz G. Organic Field-Effect Transistors[J]. Adv Mater, 1998,10(5):365-377. doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U

    30. [30]

      Bittle E G, Basham J I, Jackson T N. Mobility Overestimation due to Gated Contacts in Organic Field-Effect Transistors[J]. Nat Commun, 2016,710908. doi: 10.1038/ncomms10908

    31. [31]

      de Boer R W I, Gershenson M E, Morpurgo A F. Organic Single-Crystal Field-Effect Transistors[J]. Phys Status Solidi A, 2004,201(6):1302-1331. doi: 10.1002/pssa.200404336

    32. [32]

      Choi W Y, Park B G, Lee J D. Tunneling Field-Effect Transistors(TFETs) with Subthreshold Swing(SS) Less than 60 mV/dec[J]. IEEE Electron Device Lett, 2007,28(8):743-745. doi: 10.1109/LED.2007.901273

    33. [33]

      Lüssem B R, Keum C M, Kasemann D. Doped Organic Transistors[J]. Chem Rev, 2016,116(22):13714-13751. doi: 10.1021/acs.chemrev.6b00329

    34. [34]

      Jarrett C, Friend R, Brown A. Field Effect Measurements in Doped Conjugated Polymer Films:Assessment of Charge Carrier Mobilities[J]. J Appl Phys, 1995,77(12):6289-6294. doi: 10.1063/1.359096

    35. [35]

      Lu G, Pietro R D, K lln L S. Dual-characteristic Transistors Based on Semiconducting Polymer Blends[J]. Adv Electron Mater, 2016,2(10)1600267. doi: 10.1002/aelm.201600267

    36. [36]

      Xiao K, Liu Y, Guo Y. Influence of Self-assembly Monolayers on the Characteristics of Copper Phthalacyanine Thin Film Transistor[J]. Appl Phys A, 2005,80(7):1541-1545. doi: 10.1007/s00339-003-2398-8

    37. [37]

      Jurchescu O D, Baas J, Palstra T T. Effect of Impurities on the Mobility of Single Crystal Pentacene[J]. Appl Phys Lett, 2004,84(16):3061-3063. doi: 10.1063/1.1704874

    38. [38]

      Zen A, Pflaum J, Hirschmann S. Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors[J]. Adv Funct Mater, 2004,14(8):757-764. doi: 10.1002/adfm.200400017

    39. [39]

      Dickey K C, Anthony J E, Loo Y L. Improving Organic Thin-Film Transistor Performance Through Solvent-Vapor Annealing of Solution-Processable Triethylsilylethynyl Anthradithiophene[J]. Adv Mater, 2006,18(13):1721-1726. doi: 10.1002/adma.200600188

    40. [40]

      Salahuddin S, Datta S. Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices[J]. Nano Lett, 2008,8(2):405-410. doi: 10.1021/nl071804g

    41. [41]

      Qiu C, Liu F, Xu L. Dirac-Source Field-Effect Transistors as Energy-Efficient, High-Performance Electronic Switches[J]. Science, 2018,361(6400):387-392. doi: 10.1126/science.aap9195

    42. [42]

      Fukuda K, Sekitani T, Someya T. Effects of Annealing on Electronic and Structural Characteristics of Pentacene Thin-Film Transistors on Polyimide Gate Dielectrics[J]. Appl Phys Lett, 2009,95(2)023302. doi: 10.1063/1.3179166

    43. [43]

      Yokota T, Kuribara K, Tokuhara T. Flexible Low-Voltage Organic Transistors with High Thermal Stability at 250 C[J]. Adv Mater, 2013,25(27):3639-3644. doi: 10.1002/adma.201300941

    44. [44]

      Liu J, Sheina E, Kowalewski T. Tuning the Electrical Conductivity and Self-Assembly of Regioregular Polythiophene by Block Copolymerization:Nanowire Morphologies in New Di-and Triblock Copolymers[J]. Angew Chem, 2002,114(2):339-342.  

    45. [45]

      Babel A, Jenekhe S A. Morphology and Field-Effect Mobility of Charge Carriers in Binary Blends of Poly(3-hexylthiophene) with Poly[2-methoxy-5-(2-ethylhexoxy)-1, 4-phenylenevinylene] and Polystyrene[J]. Macromolecules, 2004,37(26):9835-9840. doi: 10.1021/ma0482314

    46. [46]

      Lu G, Bu L, Li S. Bulk Interpenetration Network of Thermoelectric Polymer in Insulating Supporting Matrix[J]. Adv Mater, 2014,26(15):2359-2364. doi: 10.1002/adma.201305320

    47. [47]

      Qiu L, Lee W H, Wang X. Organic Thin-Film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer[J]. Adv Mater, 2009,21(13):1349-1353. doi: 10.1002/adma.200802880

    48. [48]

      Shang Z, Heumueller T, Prasanna R. Trade-Off Between Trap Filling, Trap Creation, and Charge Recombination Results in Performance Increase at Ultralow Doping Levels in Bulk Heterojunction Solar Cells[J]. Adv Energy Mater, 2016,6(24)1601149. doi: 10.1002/aenm.201601149

    49. [49]

      Lee J H, Lee Y H, Ha Y H. Semiconducting/Insulating Polymer Blends with Dual Phase Separation for Organic Field-Effect Transistors[J]. RSC Adv, 2017,7(13):7526-7530. doi: 10.1039/C6RA27953H

    50. [50]

      Torricelli F, Ghittorelli M, Smits E C. Ambipolar Organic Tri-gate Transistor for Low-Power Complementary Electronics[J]. Adv Mater, 2016,28(2):284-290. doi: 10.1002/adma.201503414

    51. [51]

      Torricelli F, Colalongo L, Raiteri D. Ultra-High Gain Diffusion-Driven Organic Transistor[J]. Nat Commun, 2016,710550. doi: 10.1038/ncomms10550

    52. [52]

      Colalongo L, Torricelli F, Kovacs-Vajna Z M. A New Electroluminescent Organic Dual-gate Field-Effect Transistor[J]. IEEE Electron Device Lett, 2015,36(7):717-719. doi: 10.1109/LED.2015.2432852

    53. [53]

      Chang H C, Lu C, Liu C L. Single-crystal C60 Needle/CuPc Nanoparticle Double Floating-Gate for Low-Voltage Organic Transistors Based Non-volatile Memory Devices[J]. Adv Mater, 2015,27(1):27-33. doi: 10.1002/adma.201403771

    54. [54]

      Zhou L, Bu L, Li D. Gate-Voltage-Dependent Charge Transport in Multi-dispersed Polymer Thin Films[J]. Appl Phys Lett, 2017,110(9)093301. doi: 10.1063/1.4977436

    55. [55]

      Liu C, Sirringhaus H. Polymer Field-Effect Transistors Based on Semiconducting Polymer Heterojunctions[J]. J Appl Phys, 2010,107(1)014516. doi: 10.1063/1.3264732

    56. [56]

      Lee B H, Bazan G C, Heeger A J. Doping-Induced Carrier Density Modulation in Polymer Field-Effect Transistors[J]. Adv Mater, 2016,28(1):57-62. doi: 10.1002/adma.201504307

    57. [57]

      McCulloch I, Salleo A, Chabinyc M J S. Avoid the Kinks when Measuring Mobility[J]. Science, 2016,352(6293):1521-1522. doi: 10.1126/science.aaf9062

    58. [58]

      Phan H, Wang M, Bazan G C. Electrical Instability Induced by Electron Trapping in Low-Bandgap Donor-Acceptor Polymer Field-Effect Transistors[J]. Adv Mater, 2015,27(43):7004-7009. doi: 10.1002/adma.201501757

    59. [59]

      Siol C, Melzer C, von Seggern H. Electron Trapping in Pentacene Based P-and N-Type Organic Field-Effect Transistors[J]. Appl Phys Lett, 2008,93(13)133303. doi: 10.1063/1.2992031

    60. [60]

      Choi H H, Cho K, Frisbie C D. Critical Assessment of Charge Mobility Extraction in FETs[J]. Nat Mater, 2017,17(1):2-7.  

    61. [61]

      Bittle E G, Basham J I, Jackson T N. Mobility Overestimation due to Gated Contacts in Organic Field-Effect Transistors[J]. Nat Commun, 2016,710908. doi: 10.1038/ncomms10908

    62. [62]

      Li D, Li S, Lu W. Rapidly Measuring Charge Carrier Mobility of Organic Semiconductor Films upon a Point-Contact Four-Probes Method[J]. IEEE J Electron Devices Soc, 2019,7:303-308. doi: 10.1109/JEDS.2018.2872714

    63. [63]

      Rolin C, Kang E, Lee J H. Charge Carrier Mobility in Thin Films of Organic Semiconductors by the Gated Van Der Pauw Method[J]. Nat Commun, 2017,814975. doi: 10.1038/ncomms14975

    64. [64]

      Chen Y, Lee B, Yi H. Dynamic Character of Charge Transport Parameters in Disordered Organic Semiconductor Field-Effect Transistors[J]. Phys Chem Chem Phys, 2012,14(41):14142-14151. doi: 10.1039/c2cp41823a

    65. [65]

      Chen Z, Lee M J, Ashraf R S. High-Performance Ambipolar Diketopyrrolopyrrole-thieno[3, 2-b] Thiophene Copolymer Field-Effect Transistors with Balanced Hole and Electron Mobilities[J]. Adv Mater, 2012,24(5):647-652. doi: 10.1002/adma.201102786

    66. [66]

      Bu L, Gao S, Wang W. Film-Depth-Dependent Light Absorption and Charge Transport for Polymer Electronics:A Case Study on Semiconductor/Insulator Blends by Plasma Etching[J]. Adv Electron Mater, 2016,2(12)1600359. doi: 10.1002/aelm.201600359

    67. [67]

      Bu L, Hu M, Lu W. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors[J]. Adv Mater, 2018,30(2)1704695. doi: 10.1002/adma.201704695

    68. [68]

      Bu L, Qiu Y, Wei P. Manipulating Transistor Operation via Nonuniformly Distributed Charges in a Polymer Insulating Electret Layer[J]. Phys Rev Appl, 2016,6(5)054022. doi: 10.1103/PhysRevApplied.6.054022

    69. [69]

      Dissado L A, Fothergill J C. Electrical Degradation and Breakdown in Polymers[M]. IET: 1992, Vol. 9.

    70. [70]

      Wei P, Li S, Li D. Organic-Semiconductor:Polymer-Electret Blends for High-Performance Transistors[J]. Nano Res, 2018,11(11):5835-5848. doi: 10.1007/s12274-018-2088-7

    71. [71]

      Wei P, Hu Y, Zhu Y. Dopant/Semiconductor/Electret Trilayer Architecture for High-Performance Organic Field-Effect Transistors[J]. Adv Electron Mater, 2018,4(9)1800339. doi: 10.1002/aelm.201800339

    72. [72]

      Wang Y, Zhang Y, Lu G. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells[J]. ACS Appl Mater Interfaces, 2018,10(16):13741-13747. doi: 10.1021/acsami.7b14698

    73. [73]

      Lu G, Blakesley J, Himmelberger S. Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors[J]. Nat Commun, 2013,41588. doi: 10.1038/ncomms2587

    74. [74]

      Hu Y, Bu L, Wang X. Field-Effect Charge Transport in Doped Polymer Semiconductor-Insulator Alternating Bulk Junctions with Ultrathin Transport Layers[J]. ACS Appl Mater Inter, 2018,10(45):39091-39099. doi: 10.1021/acsami.8b13601

    75. [75]

      Hu Y, Wei P, Wang X. Giant Transconductance of Organic Field-Effect Transistors in Compensation Electric Fields[J]. Phys Rev Appl, 2018,10(5)054024. doi: 10.1103/PhysRevApplied.10.054024

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(41)
  • Abstract views(1744)
  • HTML views(524)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return