Citation: SU Fengmei, ZHANG Da, LIANG Feng. Progress in Preparation and Modification of Nano-catalytic Materials by Low-Temperature Plasma[J]. Chinese Journal of Applied Chemistry, ;2019, 36(8): 882-891. doi: 10.11944/j.issn.1000-0518.2019.08.190126 shu

Progress in Preparation and Modification of Nano-catalytic Materials by Low-Temperature Plasma

  • Corresponding author: LIANG Feng, liangfeng@kmust.edu.cn
  • Received Date: 30 April 2019
    Revised Date: 21 May 2019
    Accepted Date: 27 May 2019

    Fund Project: National Natural Science Foundation of China 11765010Supported by National Natural Science Foundation of China(No.51704136, No.11765010), the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(No.2016FB087), the Academician Free Exploration Project of Yunnan Province(No.2018HA006)the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department 2016FB087National Natural Science Foundation of China 51704136the Academician Free Exploration Project of Yunnan Province 2018HA006

Figures(5)

  • Low temperature plasma belongs to a non-thermal equilibrium plasma, which has higher electron temperature and lower gas temperature. It is a new method to prepare and modify nanometer catalyst. Low-temperature plasma has attracted much attention in the preparation and modification of nano-catalytic materials because of its high efficiency, environmental protection, and easy functionalization. It exhibits outstanding advantages in the unconventional preparation, doping, manufacturing defects and vacancies of nano-catalytic materials, and thus is widely used in the preparation and modification of various catalysts. In this paper, we mainly introduced the research progress of low temperature plasma in the preparation and modification of catalysts such as oxygen reduction reaction(ORR), oxygen evolution reaction(OER), hydrogen evolution reaction(HER), fuel oxidation reaction(FOR), and the reasons for improving the performance of various catalysts were discussed. The challenges of low temperature plasma in the preparation and modification of nano-catalysts were summarized, such as relatively high cost, reactor amplification, material controllable preparation and so on. At last, the development tendency of using low temperature plasma to prepare and modify the catalyst was forecasted.
  • 加载中
    1. [1]

      Duan S X, Liu X, Wang Y N. Plasma Surface Modification of Materials and Their Entrapment of Water Contaminant:A Review[J]. Plasma Proc Polym, 2017,14(9):1-24.  

    2. [2]

      Boutonnet Kizling M, Järås S G. A Review of the Use of Plasma Techniques in Catalyst Preparation and Catalytic Reactions[J]. Appl Catal A:Gen, 1996,147(1):1-21. doi: 10.1016/S0926-860X(96)00215-3

    3. [3]

      Neyts E C, Ostrikov K, Sunkara M K. Plasma Catalysis:Synergistic Effects at the Nanoscale[J]. Chem Rev, 2015,115(24):13408-13446. doi: 10.1021/acs.chemrev.5b00362

    4. [4]

      Guo Q, With P, Liu Y. Carbon Template Removal by Dielectric-Barrier Discharge Plasma for the Preparation of Zirconia[J]. Catal Today, 2013,211:156-161. doi: 10.1016/j.cattod.2013.02.032

    5. [5]

      Dou S, Tao L, Wang R. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy[J]. Adv Mater, 2018,30(21):e1705850-1705874. doi: 10.1002/adma.201705850

    6. [6]

      Andreazza P, Andreazza-Vignolle C, Rozenbaum J P. Nucleation and Initial Growth of Platinum Islands by Plasma Sputter Deposition[J]. Surf Coat Technol, 2002,151:122-127.  

    7. [7]

      Liu C J, Vissokov G P, Jang B W L. Catalyst Preparation Using Plasma Technologies[J]. Catal Today, 2002,72(3/4):173-184.  

    8. [8]

      Zhou C, Wang X, Jia X. Nanoporous Platinum Grown on Nickel Foam by Facile Plasma Reduction with Enhanced Electro-Catalytic Performance[J]. Electrochem Commun, 2012,18:33-36. doi: 10.1016/j.elecom.2012.01.029

    9. [9]

      Chen Y, Wang H, Liu C J. Formation of Monometallic Au and Pd and Bimetallic Au-Pd Nanoparticles Confined in Mesopores via Ar Glow-Discharge Plasma Reduction and Their Catalytic Applications in Aerobic Oxidation of Benzyl Alcohol[J]. J Catal, 2012,289:105-117. doi: 10.1016/j.jcat.2012.01.020

    10. [10]

      Li M W, Hu Z, Wang X Z. Low-temperature Synthesis of Carbon Nanotubes Using Corona Discharge Plasma at Atmospheric Pressure[J]. Diamond Relat Mater, 2004,13(1):111-115. doi: 10.1016/j.diamond.2003.09.008

    11. [11]

      Tao L, Lin C Y, Dou S. Creating Coordinatively Unsaturated Metal Sites in Metal-Organic-Frameworks as Efficient Electrocatalysts for the Oxygen Evolution Reaction:Insights into the Active Centers[J]. Nano Energy, 2017,41:417-425. doi: 10.1016/j.nanoen.2017.09.055

    12. [12]

      Xu L, Jiang Q, Xiao Z. Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction[J]. Angew Chem Int Ed, 2016,55(17):5277-5281. doi: 10.1002/anie.201600687

    13. [13]

      Banerjee I, Kumaran V, Santhanam V. Fabrication of Electrodes with Ultralow Platinum Loading by RF Plasma Processing of Self-assembled Arrays of Au@Pt Nanoparticles[J]. Nanotechnology, 2016,27(30):1-6.  

    14. [14]

      Panomsuwan G, Saito N, Ishizaki T. Simple One-Step Synthesis of Fluorine-Doped Carbon Nanoparticles as Potential Alternative Metal-Free Electrocatalysts for Oxygen Reduction Reaction[J]. J Mater Chem A, 2015,3(18):9972-9981. doi: 10.1039/C5TA00244C

    15. [15]

      Khataee A, Sajjadi S, Hasanzadeh A. One-Step Preparation of Nanostructured Martite Catalyst and Graphite Electrode by Glow Discharge Plasma for Heterogeneous Electro-Fenton Like Process[J]. J Environ Manage, 2017,199:31-45. doi: 10.1016/j.jenvman.2017.04.095

    16. [16]

      Petitpas G, Rollier J D, Darmon A. A Comparative Study of Non-thermal Plasma Assisted Reforming Technologies[J]. Int J Hydrogen Energy, 2007,32(14):2848-2867. doi: 10.1016/j.ijhydene.2007.03.026

    17. [17]

      Eliasson B, Kogelschatz U, Xue B Z. Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst[J]. Ind Eng Chem Res, 1998,37(8):3350-3357. doi: 10.1021/ie9709401

    18. [18]

      Moreau M, Orange N, Feuilloley M G J. Non-thermal Plasma Technologies:New Tools for Bio-decontamination[J]. Biotechnol Adv, 2008,26(6):610-617. doi: 10.1016/j.biotechadv.2008.08.001

    19. [19]

      Mariotti D, Patel J, Svrcek V. Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering[J]. Plasma Processes Polym, 2012,9(11/12):1074-1085.  

    20. [20]

      Gong K, Du F, Xia Z. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009,323(5915):760-764. doi: 10.1126/science.1168049

    21. [21]

      Kim D W, Li O L, Saito N. Enhancement of ORR Catalytic Activity by Multiple Heteroatom-Doped Carbon Materials[J]. Phys Chem Chem Phys, 2015,17(1):407-413. doi: 10.1039/C4CP03868A

    22. [22]

      Ishizaki T, Wada Y, Chiba S. Effects of Halogen Doping on Nanocarbon Catalysts Synthesized by a Solution Plasma Process for the Oxygen Reduction Reaction[J]. PCCP, 2016,18(31):21843-21851. doi: 10.1039/C6CP03579E

    23. [23]

      Panomsuwan G, Chiba S, Kaneko Y. In situ Solution Plasma Synthesis of Nitrogen-Doped Carbon Nanoparticles as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction[J]. J Mater Chem A, 2014,2(43):18677-18686. doi: 10.1039/C4TA03010A

    24. [24]

      Ishizaki T, Chiba S, Kaneko Y. Electrocatalytic Activity for the Oxygen Reduction Reaction of Oxygen-Containing Nanocarbon Synthesized by Solution Plasma[J]. J Mater Chem A, 2014,2(27):10589-10598. doi: 10.1039/c4ta01577k

    25. [25]

      Shao Y, Yin G, Gao Y. Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for PEM Fuel Cell[J]. J Power Sources, 2007,171(2):558-566. doi: 10.1016/j.jpowsour.2007.07.004

    26. [26]

      Dou S, Tao L, Huo J. Etched and Doped Co9S8/Graphene Hybrid for Oxygen Electrocatalysis[J]. Energ Environ Sci, 2016,9(4):1320-1326.  

    27. [27]

      Jafri R I, Rajalakshmi N, Ramaprabhu S. Nitrogen-Doped Multi-walled Carbon Nanocoils as Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell[J]. J Power Sources, 2010,195(24):8080-8083. doi: 10.1016/j.jpowsour.2010.06.109

    28. [28]

      Bower C, Zhu W, Jin S H. Plasma-Induced Alignment of Carbon Nanotubes[J]. Appl Phys Lett, 2000,77(6):830-832. doi: 10.1063/1.1306658

    29. [29]

      Jang I, Uh H S, Cho H J. Characteristics of Carbon Nanotubes Grown by Mesh-Inserted Plasma-Enhanced Chemical Vapor Deposition[J]. Carbon, 2007,45(15):3015-3021. doi: 10.1016/j.carbon.2007.09.043

    30. [30]

      Matthews K, Cruden B A, Chen B. Plasma-Enhanced Chemical Vapor Deposition of Multiwalled Carbon Nanofibers[J]. J Nanosci Nanotechnol, 2002,2(5):475-480. doi: 10.1166/jnn.2002.133

    31. [31]

      Bae E J, Min Y S, Kang D. Low-Temperature Growth of Single-Walled Carbon Nanotubes by Plasma Enhanced Chemical Vapor Deposition[J]. Chem Mater, 2005,17(20):5141-5145. doi: 10.1021/cm050889o

    32. [32]

      Ivanovskii A L, Enyashin A N. Graphene-Like Transition-Metal Nanocarbides and Nanonitrides[J]. Russ Chem Rev, 2013,82(8):735-746. doi: 10.1070/RC2013v082n08ABEH004398

    33. [33]

      Malesevic A, Vitchev R, Schouteden K. Synthesis of Few-Layer Graphene via Microwave Plasma-Enhanced Chemical Vapour Deposition[J]. Nanotechnology, 2008,19(30):305604-305612. doi: 10.1088/0957-4484/19/30/305604

    34. [34]

      Meyer J C, Geim A K, Katsnelson M I. The Structure of Suspended Graphene Sheets[J]. Nature, 2007,446(7131):60-63. doi: 10.1038/nature05545

    35. [35]

      Shen A, Zou Y, Wang Q. Oxygen Reduction Reaction in a Droplet on Graphite:Direct Evidence that the Edge Is More Active than the Basal Plane[J]. Angew Chem Int Ed, 2014,53(40):10804-10808. doi: 10.1002/anie.201406695

    36. [36]

      Su N, Hu X, Zhang J. Plasma-Induced Synthesis of Pt Nanoparticles Supported on TiO2 Nanotubes for Enhanced Methanol Electro-Oxidation[J]. Appl Surf Sci, 2017,399:403-410. doi: 10.1016/j.apsusc.2016.12.095

    37. [37]

      Zhang Y, Ouyang B, Xu J. Rapid Synthesis of Cobalt Nitride Nanowires:Highly Efficient and Low-Cost Catalysts for Oxygen Evolution[J]. Angew Chem Int Ed, 2016,55(30):8670-8674. doi: 10.1002/anie.201604372

    38. [38]

      Kral C, Lengauer W, Rafaja D. Critical Review on the Elastic Properties of Transition Metal Carbides, Nitrides and Carbonitrides[J]. J Alloys Compd, 1998,265(1):215-233.  

    39. [39]

      He L, Zhou D, Lin Y. Ultrarapid in Situ Synthesis of Cu2S Nanosheet Arrays on Copper Foam with Room-Temperature-Active Iodine Plasma for Efficient and Cost-Effective Oxygen Evolution[J]. ACS Catal, 2018,8(5):3859-3864. doi: 10.1021/acscatal.8b00032

    40. [40]

      Liang H, Gandi A N, Anjum D H. Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting[J]. Nano Lett, 2016,16(12):7718-7725. doi: 10.1021/acs.nanolett.6b03803

    41. [41]

      Wang H Y, Hung S F, Chen H Y. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4[J]. J Am Chem Soc, 2016,138(1):36-39. doi: 10.1021/jacs.5b10525

    42. [42]

      Gao R, Li Z, Zhang X. Carbon-Dotted Defective CoO with Oxygen Vacancies:A Synergetic Design of Bifunctional Cathode Catalyst for Li-O2 Batteries[J]. ACS Catal, 2016,6(1):400-406.  

    43. [43]

      Wang Y, Zhang Y, Liu Z. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts[J]. Angew Chem Int Ed, 2017,56(21):5867-5871. doi: 10.1002/anie.201701477

    44. [44]

      Kong D, Wang H, Cha J J. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers[J]. Nano Lett, 2013,13(3):1341-1347. doi: 10.1021/nl400258t

    45. [45]

      Tao L, Duan X, Wang C. Plasma-Engineered MoS2 Thin-Film as an Efficient Electrocatalyst for Hydrogen Evolution Reaction[J]. Chem Commun, 2015,51(35):7470-7473. doi: 10.1039/C5CC01981H

    46. [46]

      Zhang Y, Ouyang B, Xu J. 3D Porous Hierarchical Nickel-Molybdenum Nitrides Synthesized by RF Plasma as Highly Active and Stable Hydrogen-Evolution-Reaction Electrocatalysts[J]. Adv Energy Mater, 2016,6(11):1600221-1600227. doi: 10.1002/aenm.201600221

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    5. [5]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    6. [6]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(4)
  • Abstract views(700)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return