Citation: SUN Rongrong, WANG Liqiu. Low Temperature Synthesis and Characterization of Rod-Shaped LiZnPO4[J]. Chinese Journal of Applied Chemistry, ;2019, 36(8): 924-931. doi: 10.11944/j.issn.1000-0518.2019.08.190097 shu

Low Temperature Synthesis and Characterization of Rod-Shaped LiZnPO4

  • Corresponding author: WANG Liqiu, Lqwang218cn@163.com
  • Received Date: 10 April 2019
    Revised Date: 23 May 2019
    Accepted Date: 27 May 2019

Figures(8)

  • The properties of LiZnPO4 are closely related to its morphology. The solid state method and the hydrothermal method are widely used for synthesis of LiZnPO4, neither has the advantage of controlling the morphology of LiZnPO4. In this paper, the rod-shaped LiZnPO4 was successfully synthesized by the modified precipitation method. The forming process, phases, microstructure and morphology of LiZnPO4 were investigated by thermogravimetry coupled with differential scanning calorimetry(TG-DSC), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and field emission scanning electron microscopy(FE-SEM). The effects of synthesis methods, calcination temperature and time, acid types on the morphology of LiZnPO4 were also explored. The results show that, compared with the solid state method, the modified precipitation method with acetic acid can not only effectively reduce the synthesis temperature of LiZnPO4 to 500℃, but also easily control the formation of rod-shaped LiZnPO4. LiZnPO4 can be obtained at 600℃ for 2 h by the modified precipitation method with acetic acid, which is regular in rod shape with good dispersibility, rectangular cross section and diameter of about 2 μm. In addition, it was found that the light response capacity of the rod-shaped LiZnPO4 was significantly enhanced compared with that of the LiZnPO4 particles without regular morphology.
  • 加载中
    1. [1]

      Jensen T R. A New Polymorph of LiZnPO4 Center Dot H2O:Synthesis, Crystal Structure and Thermal Transformation[J]. J Chem Soc Dalton Trans, 1998,13:2261-2266.

    2. [2]

      Elammari L, Elouadi B. Structure of α-LiZnPO4[J]. Acta Crystallogr Sect C, 1989,45(12):1864-1867. doi: 10.1107/S0108270189003094

    3. [3]

      Bu X H, Gier T E, Stucky G D. A New Polymorph of Lithium Zinc Phosphate with the Cristobalite-Type Framework Topology[J]. Solid State Chem, 1998,138(1):126-130. doi: 10.1006/jssc.1998.7762

    4. [4]

      Jensen T R, Norby P, Stein P C. Preparation, Structure Determination and Thermal Transformation of a New Lithium Zinc Phosphate, δ1-LiZnPO4[J]. J Solid State Chem, 1995,117(1):39-47. doi: 10.1006/jssc.1995.1244

    5. [5]

      Bu X H, Gier T E, Stucky G D. A New Form of Lithium Zinc Phosphate with an Ordered Phenakite Structure, LiZnPO4[J]. Acta Crystallogr Sect C, 1996,52:1601-1603. doi: 10.1107/S0108270195015940

    6. [6]

      Torres-Trevino G, West A R. Compound Formation, Crystal Chemistry, and Phase Equilibria in the System Li3PO4-Zn3(PO4)2[J]. J Solid State Chem, 1986,61(1):56-66. doi: 10.1016/0022-4596(86)90006-X

    7. [7]

      Ouyang C, Ma S, Rao Y. LiZnPO4:Tb3+, Ce3+ Green Phosphors with High Efficiency[J]. J Rare Earth, 2012,30(7):637-640. doi: 10.1016/S1002-0721(12)60104-5

    8. [8]

      NONG Rong, HUANG Yingheng, LU Ke. Synthesis and Al3+ Senstized Luminescence of Green-Yellow Emitting Phorphor LiZnPO4:Mn2+, Al3+ for LED[J]. Sci Technol Rev, 2015,33(13):13-16. doi: 10.3981/j.issn.1000-7857.2015.13.001

    9. [9]

      Alibakhshi E, Ghasemi E, Mandavian M. Corrosion Inhibition by Lithium Zinc Phosphate Pigment[J]. Corros Sci, 2013,77:222-229. doi: 10.1016/j.corsci.2013.08.005

    10. [10]

      Jiang J. The Synthesis and Ion-Exchange Property of Li+ Memorized Spinel LiZnPO4[C]//The 2nd International Conference on Engineering Materials, Energy, Management and Control. Wuhan, People's R China, 2012: 789-792. 

    11. [11]

      Yiming W, Giuli G, Moretti A. Synthesis and Characterization of Zn-Doped LiFePO4 Cathode Materials for Li-Ion Battery[J]. Mater Chem Phys, 2015,155:191-204. doi: 10.1016/j.matchemphys.2015.02.023

    12. [12]

      Zhao Y M, Chen L, Chen X R. Crystal Structure and Electrochemical Properties of LiFe1-xZnxPO4(x ≤ 1.0)[J]. Powder Diffr, 2011,26(3):238-243. doi: 10.1154/1.3624811

    13. [13]

      Xia C C, Jiang D H, Chen G H. Microwave Dielectric Ceramic of LiZnPO4 for LTCC Applications[J]. J Mater Sci Mater Electron, 2017,28(16):12026-12031. doi: 10.1007/s10854-017-7013-4

    14. [14]

      Thejus P K, Koley B, Nishanth K G. An Intense Purple Chromophore Based on Co2+ in Distorted Tetrahedral Coordination[J]. Dyes Pigm, 2018,158:267-276. doi: 10.1016/j.dyepig.2018.05.054

    15. [15]

      RONG Hua, GAO Yan, JI Liangshuo. Preparation and Photocatalytic Degradation Activity of Different Morphology Micro/Nano ZnO[J]. J B Inst Petro-Chem Technol, 2018,26(3):1-7. doi: 10.12053/j.issn.1008-2565.2018.03.001

    16. [16]

      Harrison W T A, Gier T E, Nicol J M. Tetrahedral-Framework Lithium Zinc Phosphate Phases:Location of Light-Atom Positions in LiZnPO4·H2O by Powder Neutron Diffraction and Structure Determination of LiZnPO4 by ab Initio Methods[J]. J Solid State Chem, 1995,114(1):249-257. doi: 10.1006/jssc.1995.1036

    17. [17]

      Chen Z, Chai Q, Liao S. Preparation of LiZnPO4·H2O via a Novel Modified Method and Its Non-Isothermal Kinetics and Thermodynamics of Thermal Decomposition[J]. J Therm Anal Calorim, 2012,108(3):1235-1242. doi: 10.1007/s10973-011-1799-8

    18. [18]

      Liao S, Chen Z P, Tian X Z. Synthesis and Regulation of α-LiZnPO4·H2O via a Solid-State Reaction at Low-Heating Temperatures[J]. Mater Res Bull, 2009,44(6):1428-1431. doi: 10.1016/j.materresbull.2008.10.018

    19. [19]

      Li X Q, Gong P W, Li Y Z. Double-Carrier Drug Delivery System Based on Polyurethane-Polyvinyl Alcohol/Layered Double Hydroxide Nanocomposite Hydrogel[J]. Mater Lett, 2019,243:1-4. doi: 10.1016/j.matlet.2019.01.151

    20. [20]

      JIAO Zhiwei, WANG Haijun, ZHU Guangwei. Synthesis, Structure Characterization and Optical Property of Nonliner Optical Crystal δ-LiZnPO4[J]. J Synth Cryst, 2017,46(7):1197-1202. doi: 10.3969/j.issn.1000-985X.2017.07.001

    21. [21]

      Brijesh K, Nagaraja H S. Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes[J]. J Electron Mater, 2019,48(7):4188-4195. doi: 10.1007/s11664-019-07185-8

    22. [22]

      Kumar U, Yadav D, Thakur A K. Investigation on Phase Formation of Sr2SnO4 and Effect of La-Doping on Its Structural and Optical Properties[J]. J Therm Anal Calorim, 2019,135(4):1987-1999. doi: 10.1007/s10973-018-7432-3

  • 加载中
    1. [1]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    2. [2]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    9. [9]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    10. [10]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    11. [11]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    12. [12]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    13. [13]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    14. [14]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    15. [15]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    16. [16]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    17. [17]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    18. [18]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    19. [19]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(4)
  • Abstract views(305)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return