Citation: LIU Zhirong. Evaluation on Efficiencies of 11 Purification Methods Toward 50 Pesticide Residues in Angelica sinensis by Ultra-high Performance Liquid Chromatography/Tandem Mass Spectrometry[J]. Chinese Journal of Applied Chemistry, ;2019, 36(8): 968-976. doi: 10.11944/j.issn.1000-0518.2019.08.190011 shu

Evaluation on Efficiencies of 11 Purification Methods Toward 50 Pesticide Residues in Angelica sinensis by Ultra-high Performance Liquid Chromatography/Tandem Mass Spectrometry

  • Corresponding author: LIU Zhirong, 553111058@qq.com
  • Received Date: 14 January 2019
    Revised Date: 25 March 2019
    Accepted Date: 23 April 2019

Figures(4)

  • Fifty pesticides in Angelica sinensis, were determined by ultra-high performance liquid chromatography/tandem mass spectrometry(UPLC-MS/MS). Through comparing 11 kinds of purification methods, the best effective matrix purification method was selected. The pesticide residues were extracted from samples with acetoniteile, cleaned-up with NaCl and then analyzed using UPLC-MS/MS in dynamic multiple reaction monitoring(dMRM) mode with positive and negative electrospray ionization. The pesticide residues were quantified by matrix matched standard solution-internal standard method. All calibration curves showed good linearity(R2 > 0.99) within the test ranges. The average recoveries of most pesticides at the spiked levels of 10, 50, 100 μg/kg ranged from 70.1%~117.7% with RSDs of 1.0%~20.0%. The limits of quantification of 50 pesticides were 1.0~20.0 μg/kg. The method provides a reliable basis for accurate, efficient and economical detection of targeted analytes in Angelica sinensis.
  • 加载中
    1. [1]

      Abbas M S, Soliman A S, Elgammal H A. Development and Validation of a Multiresidue Method for the Determination of 323 Pesticide Residues in Dry Herbs Using QuEChERS Method and LC-ESI-MS/MS[J]. Int J Environ Anal Chem, 2017:1-21.

    2. [2]

      Anastassiades M, Lehotay S J, Stajnbaher D. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce[J]. J AOAC Int, 2003,86(2):412-431.

    3. [3]

      Anastassiades M, Masstovska K, Lehotay S J. Evaluation of Analyte Protectants to Improve Gas Chromatographic Analysis of Pesticides[J]. J Chromatogr A, 2003,1015(1):163-184.  

    4. [4]

      Yang X, Zhang H, Liu Y. Multiresidue Method for Determination of 88 Pesticides in Berry Fruits Using Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry:Determination of 88 Pesticides in Berries Using SPE and GC-MS[J]. Food Chem, 2011,127(2):855-865. doi: 10.1016/j.foodchem.2011.01.024

    5. [5]

      Chen Y, Altaher F, Juskelis R. Multiresidue Pesticide Analysis of Dried Botanical Dietary Supplements Using an Automated Dispersive SPE Cleanup for QuEChERS and High-Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. J Agric Food Chem, 2012,60(40):9991-9999. doi: 10.1021/jf301723g

    6. [6]

      Filho A M, Fábio Neves dos Santos, Pereira P A D P. Development, Validation and Application of a Method Based on DI-SPME and GC MS for Determination of Pesticides of Different Chemical Groups in Surface and Groundwater Samples[J]. Microchem J, 2010,96(1):139-145. doi: 10.1016/j.microc.2010.02.018

    7. [7]

      Wang J, Tuduri L, Mercury M. Sampling Atmospheric Pesticides with SPME:Laboratory Developments and Field Study[J]. Environ Pollut, 2009,157(2):365-370. doi: 10.1016/j.envpol.2008.10.006

    8. [8]

      Raeppel C, Fabritius M, Nief M. Coupling ASE, Sylilation and SPME-GC/MS for the Analysis of Current-Used Pesticides in Atmosphere[J]. Talanta, 2014,121:24-29. doi: 10.1016/j.talanta.2013.12.040

    9. [9]

      Mahmood S F, Sultana T, Rahman M A. Supercritical Fluid Extraction as a Successful Technique for Pesticides Estimation[J]. Bangladesh J Sci Ind Res, 2010,45(1):47-56.  

    10. [10]

      Nam K, King J W. Coupled SFE/SFC/GC for the Trace Analysis of Pesticide Residues in Fatty Food Samples[J]. J Sep Sci, 2015,17(8):577-582.  

    11. [11]

      Eskilsson C S, Mathiasson L. Supercritical Fluid Extraction of the Pesticides Carbosulfan and Imidacloprid from Process Dust Waste[J]. J Agric Food Chem, 2000,48(11):5159-5164. doi: 10.1021/jf000275y

    12. [12]

      Lee J M, Park J W, Jang G C. Comparative Study of Pesticide Multi-residue Extraction in Tobacco for Gas Chromatography-Triple Quadrupole Mass Spectrometry[J]. J Chromatogr A, 2008,1187(1):25-33.  

    13. [13]

      Lin Q B, Xue Y Y, Song H. Determination of the Residues of 18 Carbamate Pesticides in Chestnut and Pine Nut by GPC Cleanup and UPLC-MS-MS[J]. J Chromatogr Sci, 2010,48(1):7-11. doi: 10.1093/chromsci/48.1.7

    14. [14]

      Banerjee K, Oulkar D P, Dasgupta S. Validation and Uncertainty Analysis of a Multi-residue Method for Pesticides in Grapes Using Ethyl Acetate Extraction and Liquid Chromatography-Tandem Mass Spectrometry[J]. J Chromatogr A, 2007,1173(1):98-109.  

    15. [15]

      Plácido A, Paíga P, Lopes D H. Determination of Methiocarb and Its Degradation Products, Methiocarb Sulfoxide and Methiocarb Sulfone, in Bananas Using QuEChERS Extraction[J]. J Agric Food Chem, 2013,61(2):325-331. doi: 10.1021/jf304027s

    16. [16]

      Chamkasem N, Ollis L W, Harmon T. Analysis of 136 Pesticides in Avocado Using a Modified QuEChERS Method with LC-MS/MS and GC-MS/MS[J]. J Agric Food Chem, 2013,61(10):2315-2329. doi: 10.1021/jf304191c

    17. [17]

      Souza C S, Marian B C, Jaime d M E. A Vortex-Assisted MSPD Method for the Extraction of Pesticide Residues from Fish Liver and Crab Hepatopancreas with Determination by GC-MS[J]. Talanta, 2013,112(15):63-68.  

    18. [18]

      Lee J, Shin Y, Lee J. Simultaneous Analysis of 310 Pesticide Multiresidues Using UHPLC-MS/MS in Brown Rice, Orange, and Spinach[J]. Chemosphere, 2018,207:519-526. doi: 10.1016/j.chemosphere.2018.05.116

    19. [19]

      Xiao J J, Duan J S, Xu X. Behavior of Pesticides and Their Metabolites in Traditional Chinese Medicine Paeoniae Radix Alba During Processing and Associated Health Risk[J]. J Pharmaceut Biomed, 2018,161:20-27. doi: 10.1016/j.jpba.2018.08.029

    20. [20]

      Zhao P, Alvarez P, Li X. Development of an Analytical Method for Pesticide Residues in Berries with Dispersive Dolid Phase Extraction Using Multiwalled Carbon Nanotubes and Primary Secondary Amine Sorbents[J]. Anal Methods, 2018,10:757-766. doi: 10.1039/C7AY02178J

    21. [21]

      Dou X, Chu X, Kong W. Carbon Nanotube-Based QuEChERS Extraction and Enhanced Product Ion Scan-Assisted Confirmation of Multi-pesticide Residue in Dried Tangerine Peel[J]. RSC Adv, 2015,5:86163-86171. doi: 10.1039/C5RA15348D

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    3. [3]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    4. [4]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    5. [5]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    6. [6]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    7. [7]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    8. [8]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    9. [9]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    10. [10]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

    11. [11]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    12. [12]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(2)
  • Abstract views(403)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return