Citation: LIU Bing, GONG Huili, LIU Rui, HU Changwen. Synthesis of TiO2 Coated Gold Nanorod with Core-Shell Structure and Its Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Applied Chemistry, ;2019, 36(8): 939-948. doi: 10.11944/j.issn.1000-0518.2019.08.190004 shu

Synthesis of TiO2 Coated Gold Nanorod with Core-Shell Structure and Its Photocatalytic Hydrogen Evolution

  • Corresponding author: LIU Bing, liubing7100@126.com
  • Received Date: 7 January 2019
    Revised Date: 25 February 2019
    Accepted Date: 9 April 2019

Figures(13)

  • TiO2 coated gold nanorods with core-shell structure(GNR@TiO2) about 200 nm were synthesized by sol-gel process and hydrothermal method. After hydrothermal crystallization, the particle size of the material expands to 300 nm, while the morphology and the local surface plasmon resonance(LSPR) of GNR have no change. The structure and properties of the samples were characterized by X-ray diffraction(XRD), high resolution transmission electron microscope(HRTEM), X-ray photoelectron spectroscopy(XPS), ultraviolet-visible absorption spectroscopy and photocatalytic hydrogen production. The results show that the hydrogen production rate of crystallized GNR@TiO2 is 31.0 μmol/(g·h) in the visible light range, which is much higher than that of 7.3 μmol/(g·h) before crystallization. Based on experimental result and finite difference time domain(FDTD) analysis, we proposed a photocatalytic mechanism for efficient hydrogen generation. LSPR promotes the visible light absorption. Anatase TiO2 enhances the electric field and promotes the photogenerated electron-hole separation. The crystallized TiO2 shell is porous and multi-mesoporous, which increases the active sites and is conducive to material transfer.
  • 加载中
    1. [1]

      Tong H, Ouyang S, Bi Y. Nano-Photocatalytic Materials:Possibilities and Challenges[J]. Adv Mater, 2012,24(2):229-251. doi: 10.1002/adma.201102752

    2. [2]

      Zhou H, Qu Y, Zeid T. Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures[J]. Energy Environ Sci, 2012,5:6732-6743. doi: 10.1039/c2ee03447f

    3. [3]

      Ma Y, Wang X, Jia Y. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem Rev, 2014,114(19):9987-11043. doi: 10.1021/cr500008u

    4. [4]

      Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chem Rev, 1995,95:735-758. doi: 10.1021/cr00035a013

    5. [5]

      Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem Rev, 2007,107(7):2891-2959. doi: 10.1021/cr0500535

    6. [6]

      Silva C G, Juarez R, Marino T. Influence of Excitation Wavelength(UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen[J]. J Am Chem Soc, 2011,133(3):595-602. doi: 10.1021/ja1086358

    7. [7]

      Tachikawa T, Yonezawa T, Majima T. Super-Resolution Mapping of Reactive Sites on Titania-Based Nanoparticles with Water-Soluble Fluorogenic Probes[J]. ACS Nano, 2013,7(1):263-275. doi: 10.1021/nn303964v

    8. [8]

      Bian Z F, Tachikawa T, Zhang P. Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity[J]. J Am Chem Soc, 2014,136(1):458-465. doi: 10.1021/ja410994f

    9. [9]

      Knight M W, Sobhani H, Nordlander P. Photodetection with Active Optical Antennas[J]. Science, 2011,332(6030):702-704. doi: 10.1126/science.1203056

    10. [10]

      Awazu K, Fujimaki M, Rockstuhl C. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide[J]. J Am Chem Soc, 2008,130(5):1676-1680. doi: 10.1021/ja076503n

    11. [11]

      Zhang Q, Lima D Q, Lee I. A Highly Active Titanium Dioxide Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration[J]. Angew Chem Int Ed, 2011,50(31):7088-7092. doi: 10.1002/anie.201101969

    12. [12]

      Tada H, Mitsui T, Kiyonaga T. All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System[J]. Nat Mater, 2006,5:782-786. doi: 10.1038/nmat1734

    13. [13]

      Mubeen S, Lee J, Singh N. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons[J]. Nat Nanotechnol, 2013,8:247-251. doi: 10.1038/nnano.2013.18

    14. [14]

      Christopher P, Xin H L, Linic S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures[J]. Nat Chem, 2011,3:467-472. doi: 10.1038/nchem.1032

    15. [15]

      Li G, Cherqui C, Bigelow N W. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS[J]. Nano Lett, 2015,15(5):3465-3471. doi: 10.1021/acs.nanolett.5b00802

    16. [16]

      Long R, Mao K, Gong M. Tunable Oxygen Activation for Catalytic Organic Oxidation:Schottky Junction Versus Plasmonic Effects[J]. Angew Chem Int Ed, 2014,126(12):3269-3273. doi: 10.1002/ange.201309660

    17. [17]

      Long R, Rao Z, Mao K. Efficient Coupling of Solar Energy to Catalytic Hydrogenation by Using Well-Designed Palladium Nanostructures[J]. Angew Chem Int Ed, 2015,54(8):2425-2430. doi: 10.1002/anie.201407785

    18. [18]

      Jiang R, Li B, Fang C. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications[J]. Adv Mater, 2014,26(31):5274-5309. doi: 10.1002/adma.201400203

    19. [19]

      Law M, Greene L E, Joh J C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices[J]. Nat Photonics, 2014,8:95-103. doi: 10.1038/nphoton.2013.238

    20. [20]

      Murray W A, Barnes W L. Plasmonic Materials[J]. Adv Mater, 2007,19(22):3771-3782. doi: 10.1002/adma.200700678

    21. [21]

      Anker J N, Hall W P, Lyandres O. Biosensing with Plasmonic Nanosensors[J]. Nat Mater, 2008,7:442-453. doi: 10.1038/nmat2162

    22. [22]

      Pu Y C, Wang G, Chang K D. Au Nanostructure Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-Visible Region for Photoelectrochemical Water Splitting[J]. Nano Lett, 2013,13(8):3817-3823. doi: 10.1021/nl4018385

    23. [23]

      Liu L Q, Ouyang S X, Ye J. Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance[J]. Angew Chem Int Ed, 2013,125(26):6821-6825. doi: 10.1002/ange.201300239

    24. [24]

      Liu R, Sen A. Controlled Synthesis of Heterogeneous Metal-Titania Nanostructures and Their Applications[J]. J Am Chem Soc, 2012,134(42):17505-17512. doi: 10.1021/ja211932b

    25. [25]

      Fang C, Jia H, Chang S. (Gold Core)/(Titania Shell) Nanostructures for Plasmon-Enhanced Photon Harvesting and Generation of Reactive Oxygen Species[J]. Energy Environ Sci, 2014,7:3431-3438. doi: 10.1039/C4EE01787K

    26. [26]

      Ma X Y, Chen Z G, Hartono S B. Fabrication of Uniform Anatase TiO2 Particles Exposed by {001} Facets[J]. Chem Commun, 2010,46:6608-6610. doi: 10.1039/c0cc01473g

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(3)
  • Abstract views(548)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return