Citation: SHI Xin, LIU Chuanzhi, GONG Ping, LI wei, HOU Yue. Hydrogen Peroxide and Glucose Sensitive Colorimetric Method Based on Deuterohemin-Ala His Thr Val Glu Lys[J]. Chinese Journal of Applied Chemistry, ;2019, 36(7): 847-854. doi: 10.11944/j.issn.1000-0518.2019.07.190047 shu

Hydrogen Peroxide and Glucose Sensitive Colorimetric Method Based on Deuterohemin-Ala His Thr Val Glu Lys

  • Corresponding author: HOU Yue, hy46155@126.com
  • Received Date: 21 February 2019
    Revised Date: 26 March 2019
    Accepted Date: 5 May 2019

    Fund Project: the Scientific and Technological Research Project Foundation of Jilin Provincial Science and Technology Department 20170204029SFSupported by the Scientific and Technological Research Project Foundation of Jilin Provincial Science and Technology Department(No.20170204029SF)

Figures(8)

  • A simple colorimetric method for determination of H2O2 and glucose was established based on the peroxidase-like activity of deuterohemin-Ala His Thr Val Glu Lys(DhHP-6) to catalyze the oxidation of 4-aminoantipyrine(4-APP)-chlorophenol color reaction system in the presence of H2O2. The effects of pH, substrate concentration and DhHP-6 concentration were observed, and the reaction linearity, stability, correlation and recovery rate of the colorimetric method were detected. Under optimal reaction conditions, the activity of DhHP-6 is superior to that of peroxidase(POD) under different temperatures and times; the Michaelis constant(Km) and maximum reaction rate(vmax) of DhHP-6 catalyzing H2O2 are 0.171 mmol/L and 4.22×10-6 mol/s, respectively; the linearity range of H2O2 response is 0.39~25.0 mmol/L, the coefficient of variation(CV) and spiked recovery of the high, medium and low levels are between 1.29%~2.16% and 94.5%~101.1%, respectively; and correlation coefficient with the commercial kit is 0.9946; the concentration of glucose in 36 blood samples are 4.26~17.48 mmol/L. There is no significant difference between the two sets of data for glucose assay kit(P>0.05). Therefore, this is a simple, cheap, convenient and sensitive colorimetric determination method.
  • 加载中
    1. [1]

      Jv Y, Li B X, Cao R. Positively-charged Gold Nanoparticles as Peroxidiase Mimic and Their Application in Hydrogen Peroxide and Glucose Detection[J]. Chem Commun, 2010,46:8017-8019. doi: 10.1039/c0cc02698k

    2. [2]

      Marinho H S, Real C, Cyrne L. Hydrogen Peroxide Sensing, Signaling and Regulation of Transcription Factors[J]. Redox Biol, 2014,2:535-562. doi: 10.1016/j.redox.2014.02.006

    3. [3]

      Doskey C M, Buranasudja V, Wagner B A. Tumor Cells Have Decreased Ability to Metabolize H2O2:Implications for Pharmacological Ascorbate in Cancer Therapy[J]. Redox Biol, 2016,10(C):274-284.

    4. [4]

      Sasaki A, Horiuchi N. Studies on Normal Blood Glucose Level-Statistical Approach to Interpretation of Glucose Tolerance Test[J]. J Chronic Dis, 1976,29(2):129-140. doi: 10.1016/0021-9681(76)90011-4

    5. [5]

      Chang Q, Tang H Q. Optical Determination of Glucose and Hydrogen Peroxide Using a Nanocomposite Prepared from Glucose Oxidase and Magnetite Nanoparticles Immobilized on Graphene Oxide[J]. Microchim Acta, 2014,181:527-534. doi: 10.1007/s00604-013-1145-x

    6. [6]

      Lan D, Li B X, Zhang Z J. Chemiluminescence Flow Biosensor for Glucose Based on Gold Nanoparticle-Enhanced Activities of Glucose Oxidase and Horseradish Peroxidase[J]. Biosens Bioelectron, 2008,24:934-938. doi: 10.1016/j.bios.2008.07.064

    7. [7]

      Chang Q, Zhu L, Jiang G. Sensitive Fluorescent Probes for Determination of Hydrogen Peroxide and Glucose Based on Enzyme-Immobilized Magnetite/Silica Nanoparticles[J]. Anal Bioanal Chem, 2009,395(7):2377-2385. doi: 10.1007/s00216-009-3118-9

    8. [8]

      Zhao K, Gu W, Zheng S S. SDS-MoS2 Nanoparticles as Highly-Efficient Peroxidase Mimetics for Colorimetric Detection of H2O2 and Glucose[J]. Talanta, 2015,141:47-52. doi: 10.1016/j.talanta.2015.03.055

    9. [9]

      Rauf S, Hayat Nawaz M A, Badea M. Nano-Engineered Biomimetic Optical Sensors for Glucose Monitoring in Diabetes[J]. Sensors(Basel), 2016,16(11)e1931.  

    10. [10]

      Huang W, Lin T Y, Cao Y. Hierarchical NiCo2O4 Hollow Sphere as a Peroxidase Mimetic for Colorimetric Detection of H2O2 and Glucose[J]. Sensors(Basel), 2017,17(1)e217.

    11. [11]

      Zhang W, Ma D, Du J. Prussian Blue Nanoparticles as Peroxidase Mimetics for Sensitive Colorimetric Detection of Hydrogen Peroxide and Glucose[J]. Talanta, 2014,120:362-367. doi: 10.1016/j.talanta.2013.12.028

    12. [12]

      Lin J M, Arakawa H, Yamada M. Flow Injection Chemiluminescent Determination of Trace Amounts of Hydrogen Peroxide in Snow-Water Using KIO4 K2CO3 System[J]. Anal Chim Acta, 1998,371:171-176. doi: 10.1016/S0003-2670(98)00304-3

    13. [13]

      CAI Zijun, KUANG Yongqing, PAN Dan. Sythesis and Characterization of a Novel ELF-97-based Fluorescent Probe for Hydrogen Peroxide Detection[J]. Chinese J Anal Chem, 2015,43(11):1671-1675. doi: 10.11895/j.issn.0253-3820.150124

    14. [14]

      Xu J R, Chen Z M. Determination of Peroxides in Environmental Samples by High Performance Liquid Chromatography[J]. Chinese J Chromatogr, 2005,23:366-369.  

    15. [15]

      LI Li, LU Hongmei, DENG Liu. H2O2 Electrochemistry Biosensor Based on Graphene and Gold Nanorods Composites[J]. Chinese J Anal Chem, 2013,41(5):719-724.  

    16. [16]

      Travasso R D M, Sampaio Dos Aidos F, Bayani A. Localized Redox Relays as a Privileged Mode of Cytoplasmic Hydrogen Peroxide Signaling[J]. Redox Biol, 2017,12:233-245. doi: 10.1016/j.redox.2017.01.003

    17. [17]

      Shoji E, Freund M S J. Potentiometric Sensors Based on the Inductive Effect on the pK(a) of Poly(aniline):A Nonenzymatic Glucose Sensor[J]. J Am Chem Soc, 2001,123:3383-3384. doi: 10.1021/ja005906j

    18. [18]

      Wei H, Wang E K. Nanomaterials with Enzyme-Like Characteristics(Nanozymes):Next-Generation Artificial Enzymes[J]. Chem Soc Rev, 2013,42:6060-6093. doi: 10.1039/c3cs35486e

    19. [19]

      Daltrop O, Allen J W A, Willis A C. In Vitro Studies on Thioether Bond Formation Between Hydrogenobacter thermophilus Apocytochrome c(552) with Metalloprotoporphyrin Derivatives[J]. J Biol Chem, 2004,279(44):45347-45353. doi: 10.1074/jbc.M408637200

    20. [20]

      HUANG Yingping, CAI Ruxiu. Studies on the Enzyme Catalytic Color Reaction System Using Hemoglobin as Enzyme Mimetic of Peroxidase and Its Application[J]. Chinese J Anal Chem, 2001,49(4):378-382.  

    21. [21]

      XI Yongqing, QIU Haiou, YANG Ming. Determination of Glucose by Catulltic Flurimetry with Hemoglobin Mimetic Peroxidase[J]. Chinese J Anal Chem, 2008,36(10):1343-1348. doi: 10.3321/j.issn:0253-3820.2008.10.007

    22. [22]

      CHEN Qiuying, LI Donghui, ZHENG Hong. Investigation on the Potential Use of the Mimetic Peroxidase-Catalyzed Reaction of Hydrogen Peroxide and o-Hydroxyphenylfluorone in Fluorescence Analysis[J]. Chinese J Anal Chem, 1999,27(9):997-999. doi: 10.3321/j.issn:0253-3820.1999.09.002

    23. [23]

      Gao L Z, Zhuang J, Nie L. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles[J]. Nat Nanotechnol, 2007,2:577-583. doi: 10.1038/nnano.2007.260

    24. [24]

      Zhang W, Ma D, Dun J. Prussian Blue Nanoparticles as Peroxidase Mimetics for Sensitive Colorimetric Detection of Hydrogen Peroxide and Glucose[J]. Talanta, 2014,120:362-367. doi: 10.1016/j.talanta.2013.12.028

    25. [25]

      Wang X X, Wu Q, Shan Z. BSA-Stabilized Au Clusters as Peroxidase Mimetics for Use in Xanthine Detection[J]. Biosens Bioelectron, 2011,26(8):3614-3619. doi: 10.1016/j.bios.2011.02.014

    26. [26]

      Shi W, Zhang X D, He S H. CoFe2O4 Magnetic Nanoparticles as a Peroxidase Mimic Mediated Chemiluminescence for Hydrogen Peroxide and Glucose[J]. Chem Commun(Camb), 2011,47(38):10785-10787. doi: 10.1039/c1cc14300j

    27. [27]

      Chen W, Chen J, Liu A L. Peroxidase-Like Activity of Cupric Oxide Nanoparticle[J]. Chem Catal Chem, 2013,3:1151-1154.

    28. [28]

      Sun J H, Li C Y, Qi Y F. Optimizing Colorimetric Assay Based on V2O5 Nanozymes for Sensitive Detection of H2O2 and Glucose[J]. Sensors(Basel), 2016,16(4)pii:E584. doi: 10.3390/s16040584

    29. [29]

      Cai S F, Xiao W, Duan H H. Single-Layer Rh Nanosheets with Ultrahigh Peroxidase-Like Activity for Colorimetric Biosensing[J]. Nano Res, 2018,11:6304-6315. doi: 10.1007/s12274-018-2154-1

    30. [30]

      Xie J X, Zhang X D, Wang H. Analytical and Environmental Applications of Nanoparticles as Enzyme Mimetics[J]. Trends Anal Chem, 2012,39:114-129. doi: 10.1016/j.trac.2012.03.021

    31. [31]

      WANG Liping, LIU Yali, YANG Hui. Synthesis and Anti-cataract Activity of a Novel Peroxidase Mimetic[J]. Chem J Chinese Univ, 2004,25(11):2171-2173. doi: 10.3321/j.issn:0251-0790.2004.11.038

    32. [32]

      XIU Zhiming, LIN lin, ZHOU Peng. Preparation of Deuterohemin by Recrystallization Method[J]. J Jilin Univ(Sci Ed), 2013,51(2):331-334.  

    33. [33]

      GUO Changrun, GUAN Shuwen, HUANG Lei. DhHP-6 Protection of Caenorhabditis Elegans from Heat Shock Injury Induced by Au Nanoparticles[J]. J Jilin Univ(Sci Ed), 2012,50(1):153-156.  

    34. [34]

      PENG Yan, LIU Yali, SUN Xiaoli. Protective Effect of Heme Hexapeptide on Myocardial Mitochondrial Antioxidative Damage[J]. Chinese J Lab Diagn, 2013,17(11):1952-1955.  

    35. [35]

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    15. [15]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    19. [19]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    20. [20]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

Metrics
  • PDF Downloads(2)
  • Abstract views(1258)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return