Citation: ZHANG Jidong, LI Jiayuan, JIN Huafeng. Research Progress on Small Molecule Anticancer Drug Release System Based on Fluorescence Effect[J]. Chinese Journal of Applied Chemistry, ;2019, 36(7): 733-748. doi: 10.11944/j.issn.1000-0518.2019.07.190040 shu

Research Progress on Small Molecule Anticancer Drug Release System Based on Fluorescence Effect

  • Corresponding author: ZHANG Jidong, akuzjd@aku.edu.cn
  • Received Date: 18 February 2019
    Revised Date: 9 April 2019
    Accepted Date: 30 April 2019

    Fund Project: Scientific Research Foundation for Advanced Talents of Ankang University 2018AYQDZR06Supported by the Key Projects of Shaanxi Provincial Science & Technology Department(No.2018PT-31), Major Scientific Research Projects of the Leading Industry of Ankang City(No.2016AKZDCY002), Scientific Research Foundation for Advanced Talents of Ankang University(No.2018AYQDZR06), Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture(No.Se-2018B02), the Shaanxi Provincial Innovation Experiment Program for University Students(No.201839032)the Key Projects of Shaanxi Provincial Science & Technology Department 2018PT-31Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture Se-2018B02the Shaanxi Provincial Innovation Experiment Program for University Students 201839032Major Scientific Research Projects of the Leading Industry of Ankang City 2016AKZDCY002

Figures(20)

  • In recent years, with the rising incidence of cancer, the renewal and development of cancer therapy technology is particularly important. Especially, the introduction of chemotherapy has promoted the research for the release system of fluorescence small molecule anticancer drugs. An anticancer drug release system combines organic fluorescent molecules with anticancer drugs based on fluorescent effect, which has the characteristics of low toxicity, excellent targeting to cancer cells and convenience to track and monitor. Therefore, design of prodrugs with different properties can be used to study the kinetic process of the release of anticancer drugs and provide a powerful tool for the accurate treatment for cancers. This paper mainly introduces the research progress of prodrugs based on camptothecin, SN-38 and adriamycin, and the prospects for their development.
  • 加载中
    1. [1]

      Chan J, Dodani S C, Chang C J. Reaction-Based Small-Molecule Fluorescent Probes for Chemoselective Bioimaging[J]. Nat Chem, 2012,4(12):973-984. doi: 10.1038/nchem.1500

    2. [2]

      Shcherbakova E G, Zhang B, Gozem S. Supramolecular Sensors for Opiates and Their Metabolites[J]. J Am Chem Soc, 2017,139(42):14954-14960. doi: 10.1021/jacs.7b06371

    3. [3]

      You L, Zha D, Anslyn E V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing[J]. Chem Rev, 2015,115(15):7840-7892. doi: 10.1021/cr5005524

    4. [4]

      Leng S, Qiao Q, Miao L. A Wash-free SNAP-tag Fluorogenic Probe Based on the Additive Effects of Quencher Release and Environmental Sensitivity[J]. Chem Commun, 2017,53(48):6448-6451. doi: 10.1039/C7CC01483J

    5. [5]

      Shao A, Xie Y, Zhu S. Far-Red and Near-IR AIE-Active Fluorescent Organic Nanoprobes with Enhanced Tumor-Targeting Efficacy:Shape-Specific Effects[J]. Angew Chem Int Ed, 2015,54(25):7275-7280. doi: 10.1002/anie.v54.25

    6. [6]

      Zhang J, She M, Li J. Substituent Effect on Fluorescence Signaling of the Naphthalene Carbohydrazone Based Chemosensor:Its Implication in the Detection of Zn(Ⅱ) Ions and Secondary Sensing PPi[J]. Sens Actuators B:Chem, 2018,270:362-370. doi: 10.1016/j.snb.2018.05.049

    7. [7]

      Zhang J, Yan Z, Wang S. Water Soluble Chemosensor for Ca2+ Based on Aggregation-Induced Emission Characteristics and Its Fluorescence Imaging in Living Cells[J]. Dyes Pigm, 2018,150(0):112-120.

    8. [8]

      Wu L, Zou Y, Deng C. Intracellular Release of Doxorubicin from Core-Crosslinked Polypeptide Micelles Triggered by both pH and Reduction Conditions[J]. Biomaterials, 2013,34(21):5262-5272. doi: 10.1016/j.biomaterials.2013.03.035

    9. [9]

      Yin C, Huo F, Zhang J. Thiol-Addition Reactions and Their Applications in Thiol Recognition[J]. Chem Soc Rev, 2013,42(14):6032-6059. doi: 10.1039/c3cs60055f

    10. [10]

      Minami T, Emami F, Nishiyabu R. Quantitative Analysis of Modeled ATP Hydrolysis in Water by a Colorimetric Sensor Array[J]. Chem Commun, 2016,52(50):7838-7841. doi: 10.1039/C6CC02923J

    11. [11]

      Gao M, Yu F, Lv C. Fluorescent Chemical Probes for Accurate Tumor Diagnosis and Targeting Therapy[J]. Chem Soc Rev, 2017,46(8):2237-2271. doi: 10.1039/C6CS00908E

    12. [12]

      Mei J, Huang Y, Tian H. Progress and Trends in AIE-Based Bioprobes:A Brief Overview[J]. ACS Appl Mater Interfaces, 2018,10(15):12217-12261. doi: 10.1021/acsami.7b14343

    13. [13]

      Li J, Chen L, Du L. Cage the Firefly Luciferin!-A Strategy for Developing Bioluminescent Probes[J]. Chem Soc Rev, 2013,42(2):662-676. doi: 10.1039/C2CS35249D

    14. [14]

      Qiu Y, Li X, Duan J Z. Influence of Drug Property and Product Design on in Vitro-in Vivo Correlation of Complex Modified-Release Dosage Forms[J]. J Pharm Sci, 2014,103(2):507-516. doi: 10.1002/jps.23804

    15. [15]

      Malekzad H, Mirshekari H, Sahandi Zangabad P. Plant Protein-Based Hydrophobic Fine and Ultrafine Carrier Particles in Drug Delivery Systems[J]. Crit Rev Biotechnol, 2018,38(1):47-67.  

    16. [16]

      Kakish H F, Tashtoush B, Ibrahim H G. A Novel Approach for the Preparation of Highly Loaded Polymeric Controlled Release Dosage Forms of Diltiazem HCl and Diclofenac Sodium[J]. Eur J Pharm Biopharm, 2002,54:75-81. doi: 10.1016/S0939-6411(02)00035-8

    17. [17]

      Kumar R, Shin W S, Sunwoo K. Small Conjugate-Based Theranostic Agents:An Encouraging Approach for Cancer Therapy[J]. Chem Soc Rev, 2015,44(19):6670-6683. doi: 10.1039/C5CS00224A

    18. [18]

      Wang Y, Zhang L, Zhang X. Precise Polymerization of a Highly Tumor Microenvironment-Responsive Nanoplatform for Strongly Enhanced Intracellular Drug Release[J]. ACS Appl Mater Interfaces, 2016,8(9):5833-5846. doi: 10.1021/acsami.5b11569

    19. [19]

      Nasrolahi Shirazi A, Tiwari R, Chhikara B S. Design and Biological Evaluation of Cell-Penetrating Peptide-Doxorubicin Conjugates as Prodrugs[J]. Mol Pharm, 2013,10(2):488-499. doi: 10.1021/mp3004034

    20. [20]

      Rautio J, Kumpulainen H, Heimbach T. Prodrugs:Design and Clinical Applications[J]. Nat Rev Drug Discov, 2008,7(3):255-270. doi: 10.1038/nrd2468

    21. [21]

      Torchilin V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect[J]. Adv Drug Deliv Rev, 2011,63(3):131-135. doi: 10.1016/j.addr.2010.03.011

    22. [22]

      Yuan Y, Kwok R T, Zhang R. Targeted Theranostic Prodrugs Based on an Aggregation-Induced Emission(AIE) Luminogen for Real-time Dual-drug Tracking[J]. Chem Commun, 2014,50(78):11465-11468. doi: 10.1039/C4CC05255B

    23. [23]

      Botella P, Muniesa C, Vicente V. Effect of Drug Precursor in Cell Uptake and Cytotoxicity of Redox-Responsive Camptothecin Nanomedicines[J]. Mater Sci Eng C, 2016,58:692-699. doi: 10.1016/j.msec.2015.09.012

    24. [24]

      Maiti S, Park N, Han J H. Gemcitabine-Coumarin-Biotin Conjugates:A Target Specific Theranostic Anticancer Prodrug[J]. J Am Chem Soc, 2013,135(11):4567-4572. doi: 10.1021/ja401350x

    25. [25]

      Wu X, Sun X, Guo Z. In Vivo and in Situ Tracking Cancer Chemotherapy by Highly Photostable NIR Fluorescent Theranostic Prodrug[J]. J Am Chem Soc, 2014,136(9):3579-3588. doi: 10.1021/ja412380j

    26. [26]

      Ye M, Wang X, Tang J. Dual-Channel NIR Activatable Theranostic Prodrug for in Vivo Spatiotemporal Tracking Thiol-Triggered Chemotherapy[J]. Chem Sci, 2016,7(8):4958-4965. doi: 10.1039/C6SC00970K

    27. [27]

      Kong F, Liang Z, Luan D. A Glutathione(GSH)-Responsive Near-Infrared(NIR) Theranostic Prodrug for Cancer Therapy and Imaging[J]. Anal Chem, 2016,88(12):6450-6456. doi: 10.1021/acs.analchem.6b01135

    28. [28]

      Lee M H, Kim J Y, Han J H. Direct Fluorescence Monitoring of the Delivery and Cellular Uptake of a Cancer-Targeted RGD Peptide-Appended Naphthalimide Theragnostic Prodrug[J]. J Am Chem Soc, 2012,134(30):12668-12674. doi: 10.1021/ja303998y

    29. [29]

      Razgulin A, Ma N, Rao J. Strategies for in Vivo Imaging of Enzyme Activity:An Overview and Recent Advances[J]. Chem Soc Rev, 2011,40(7):4186-4216. doi: 10.1039/c1cs15035a

    30. [30]

      Mendes A C, Zelikin A N. Enzyme Prodrug Therapy Engineered into Biomaterials[J]. Adv Funct Mater, 2014,24(0):5202-5210.  

    31. [31]

      Zhang J, Chai X, He X P. Fluorogenic Probes for Disease-Relevant Enzymes[J]. Chem Soc Rev, 2019,48(2):683-722. doi: 10.1039/C7CS00907K

    32. [32]

      Liu P, Xu J, Yan D. A DT-Diaphorase Responsive Theranostic Prodrug for Diagnosis, Drug Release Monitoring and Therapy[J]. Chem Commun, 2015,51(46):9567-9570. doi: 10.1039/C5CC02149A

    33. [33]

      Angenault S, Thirot S, Schmidt F. Cancer Chemotherapy:A SN-38(7-Ethyl-10-hydroxycamptothecin) Glucuronide Prodrug for Treatment by a PMT(Prodrug monoTherapy) Strategy[J]. Bioorg Med Chem Lett, 2003,13(5):947-950. doi: 10.1016/S0960-894X(02)01080-6

    34. [34]

      Kim E-J, Bhuniya S, Lee H. An Activatable Prodrug for the Treatment of Metastatic Tumors[J]. J Am Chem Soc, 2014,136(39):13888-13894. doi: 10.1021/ja5077684

    35. [35]

      Lesch H P, Kaikkonen M U, Pikkarainen J T. Avidin-Biotin Technology in Targeted Therapy[J]. Expert Opin Drug Deliv, 2010,7(5):551-564. doi: 10.1517/17425241003677749

    36. [36]

      Bhuniya S, Maiti S, Kim E J. An Activatable Theranostic for Targeted Cancer Therapy and Imaging[J]. Angew Chem, 2014,126:4469-4475.  

    37. [37]

      Dutta D, Alex S M, Bobba K N. New Insight into a Cancer Theranostic Probe:Efficient Cell-Specific Delivery of SN-38 Guided by Biotinylated Poly(vinyl alcohol)[J]. ACS Appl Mater Interfaces, 2016,8(0):33430-33438.  

    38. [38]

      Zhou Y, Maiti M, Sharma A. Azo-Based Small Molecular Hypoxia Responsive Rheranostic for Tumor-Specific Imaging and Therapy[J]. J Control Release, 2018,288(0):14-22.

    39. [39]

      Whang C H, Yoo E, Hur S K. A Highly GSH-Sensitive SN-38 Prodrug with an "OFF-to-ON" Fluorescence Switch as a Bifunctional Anticancer Agent[J]. Chem Commun, 2018,54(65):9031-9034. doi: 10.1039/C8CC05010D

    40. [40]

      Akhter M Z, Sharma A, Rajeswari M R. Interaction of Adriamycin with a Promoter Region of Hmga1 and Its Inhibitory Effect on HMGA1 Expression in A431 Human Squamous Carcinoma Cell Line[J]. Mol Biosyst, 2011,7(4):1336-1346.  

    41. [41]

      Park S, Kim E, Kim W Y. Biotin-Guided Anticancer Drug Delivery with Acidity-Triggered Drug Release[J]. Chem Commun, 2015,51(45):9343-9345. doi: 10.1039/C5CC03003J

    42. [42]

      Kong X, Dong B, Song X. Dual Turn-On Fluorescence Signal-Based Controlled Release System for Real-Time Monitoring of Drug Release Dynamics in Living Cells and Tumor Tissues[J]. Theranostics, 2018,8(3):800-811. doi: 10.7150/thno.21577

    43. [43]

      Li S Y, Liu L H, Jia H Z. A pH-Responsive Prodrug for Real-Time Drug Release Monitoring and Targeted Cancer Therapy[J]. Chem Commun, 2014,50(80):11852-11855. doi: 10.1039/C4CC05008H

    44. [44]

      Xue X, Jin S, Zhang C. Probe-Inspired Nano-Prodrug with Dual-color Fluorogenic Property Reveals Spatiotemporal Drug Release in Living Cells[J]. ACS Nano, 2015,9:2729-2739. doi: 10.1021/nn5065452

    45. [45]

      Gao X, Cao J, Song Y. A Unimolecular Theranostic System with H2O2-Specific Response and AIE-Activity for Doxorubicin Releasing and Real-Time Tracking in Living Cells[J]. RSC Adv, 2018,8(20):10975-10979. doi: 10.1039/C8RA01185K

    46. [46]

      Bhuniya S, Lee M H, Jeon H M. A Fluorescence Off-On Reporter for Real Time Monitoring of Gemcitabine Delivery to the Cancer Cells[J]. Chem Commun, 2013,49:7141-7143. doi: 10.1039/c3cc42653j

    47. [47]

      Liu H W, Hu X X, Li K. A Mitochondrial-Targeted Prodrug for NIR Imaging Guided and Synergetic NIR Photodynamic-Chemo Cancer Therapy[J]. Chem Sci, 2017,8(11):7689-7695. doi: 10.1039/C7SC03454G

    48. [48]

      Liu Y, Zhu S, Gu K. GSH-Activated NIR Fluorescent Prodrug for Podophyllotoxin Delivery[J]. ACS Appl Mater Interfaces, 2017,9(35):29496-29504. doi: 10.1021/acsami.7b07091

    49. [49]

      Cao Y, Pan R, Xuan W. Photo-Triggered Fluorescent Theranostic Prodrugs as DNA Alkylating Agents for Mechlorethamine Release and Spatiotemporal Monitoring[J]. Org Biomol Chem, 2015,13(24):6742-6748. doi: 10.1039/C5OB00500K

  • 加载中
    1. [1]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    4. [4]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    5. [5]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    6. [6]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    7. [7]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    8. [8]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    9. [9]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    12. [12]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    13. [13]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    14. [14]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    15. [15]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    18. [18]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

Metrics
  • PDF Downloads(78)
  • Abstract views(2308)
  • HTML views(1066)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return