Citation: WANG Jun, LIU Jinyi, CHEN Liduo, LAN Tianyu, WANG Libo. Synthesis and Ethylene Oligomerization Behavior of Hyperbranched Bispyridineimine Chromium Catalyst[J]. Chinese Journal of Applied Chemistry, ;2019, 36(7): 773-781. doi: 10.11944/j.issn.1000-0518.2019.07.180401 shu

Synthesis and Ethylene Oligomerization Behavior of Hyperbranched Bispyridineimine Chromium Catalyst

  • Corresponding author: WANG Jun, wangjun1965@yeah.net
  • Received Date: 17 December 2018
    Revised Date: 31 January 2019
    Accepted Date: 6 March 2019

    Fund Project: the National Key R & D Program of China 2017YFB0306701Supported by the National Key R & D Program of China(No.2017YFB0306701)

Figures(5)

  • A new hyperbranched bispyridineimine ligand was derived from 1.0 generation hyperbranched macromolecules and 2-chloro-4-methylpyridine through substitution reaction. Multinuclear chromium complex was synthesized from the reaction with chromium(Ⅲ) chloride tetrahydrofuran complex. The structure of hyperbranched bispyridineimine ligand and chromium complex were characterized by ultraviolet-visible spectrophotometer(UV-Vis), Fourier transform infrared spectroscopy(FT-IR), proton nuclear magnetic resonance(1H NMR), and electrospray ionization mass spectrometer(ESI-MS) and elemental analysis. The result accords with what we designed theoretically. The novel hyperbranched chromium complex was evaluated as catalyst precursor in the ethylene oligomerization, using methylaluminoxane(MAO) as an activator. At the same time, we investigated the effects of reaction temperature, ethylene pressure, Al/Cr molar ratio, co-catalysts and solvents on the catalytic activity and product selectivity. The oligomerization results show that the activity of the catalyst is 1.32×105 g/(mol(Cr)·h) and the selectivity for C6 and C8 reaches up to 59.30% at 45℃ and 4 MPa, Al/Cr molar ratio of 300 and 7 μmol catalyst loading with MAO as co-catalyst in toluene.
  • 加载中
    1. [1]

      Agapie T. Selective Ethylene Oligomerization:Recent Advances in Chromium Catalysis and Mechanistic Investigations[J]. Coord Chem Rev, 2011,255(7):861-880.  

    2. [2]

      McGuinness D S. Olefin Oligomerization via Metallacycles:Dimerization, Trimerization, Tetramerization and Beyond[J]. Chem Rev, 2011,111(3):2321-2341. doi: 10.1021/cr100217q

    3. [3]

      Bryliakov K P, Talsi E P. Frontiers of Mechanistic Studies of Coordination Polymerization and Oligomerization of α-Olefins[J]. Coord Chem Rev, 2012,256(23):2994-3007.  

    4. [4]

      Chemical and Engineering News Group . Several Ecolabel Seals for Cleaners and Other Products[J]. Chem Eng News, 2013,91(4):10-15. doi: 10.1021/cen-09104-cover

    5. [5]

      CAO Shengxian, CHEN Qian, ZU Chunxing. Linear Alpha Olefin Technology Today and Application Prospects[J]. Sino-Global Energy, 2012,17(2):80-85.  

    6. [6]

      SONG Xianfeng, BI Siyong, MAO Guoliang. Advance in Catalysts for Trimerization and Tetramerization of Ethylene[J]. Petrochem Technol, 2008,37(8):858-861. doi: 10.3321/j.issn:1000-8144.2008.08.020

    7. [7]

      ZHANG Juntao, ZHANG Guoli, LIANG Shengrong. Recent Developments in Heterogeneous Catalyst of Ethylene Oligomerization to α-Oefins[J]. Chem Ind Eng Prog, 2008,27(1):157-163.  

    8. [8]

      Finiels A, Fajula F, Hulea V. Nickel-based Solid Catalysts for Ethylene Oligomerization-A Review[J]. Catal Rev-Sci Eng, 2014,4(8):2412-2426.  

    9. [9]

      Chen L, Hou J, Sun W H. Ethylene Oligomerization by Hydrazone Ni(Ⅱ) Complexes/MAO[J]. Appl Catal A Gen, 2003,246(1):11-16. doi: 10.1016/S0926-860X(02)00660-9

    10. [10]

      Breuil P R, Magna L, Olivier-Bourbigou H. ChemInform Abstract:Role of Homogeneous Catalysis in Oligomerization of Olefins:Focus on Selected Examples Based on Group 4 to Group 10 Transition Metal Complexes[J]. Catal Lett, 2015,46(13):173-192.

    11. [11]

      Keim W. Oligomerization of Ethylene to α-Olefins:Discovery and Development of the Shell Higher Olefin Process(SHOP)[J]. Angew Chem Int Edit, 2013,52(48):12492-12496. doi: 10.1002/anie.201305308

    12. [12]

      Boudier A, Breuil P A R, Magna L. Ethylene Oligomerization Using Iron Complexes:Beyond the Discovery of Bis(imino)pyridine Ligands[J]. Chem Commun, 2014,50(12):1398-1407. doi: 10.1039/c3cc47834c

    13. [13]

      Li C Q, Wang F F, Lin Z Y. Novel Nickel Complexes with Hyperbranched Structure:Synthesis, Characterization and Performance in Ethylene Oligomerization[J]. Inorg Chim Acta, 2016,453:430-438. doi: 10.1016/j.ica.2016.08.049

    14. [14]

      Boulens P, Lutz M, Jeanneau E. Iminobisphosphines to (Non-)Symmetrical Diphosphinoamine Ligands:Metal-Induced Synthesis of Diphosphorus Nickel Complexes and Application in Ethylene Oligomerisation Reactions[J]. Eur J Inorg Chem, 2014,2014(23):3754-3762. doi: 10.1002/ejic.v2014.23

    15. [15]

      Kermagoret A, Braunstein P. Mono- and Dinuclear Nickel Complexes with Phosphino-, Phosphinito-, and Phosphonitopyridine Ligands:Synthesis, Structures, and Catalytic Oligomerization of Ethylene[J]. Organometallics, 2008,27(1):88-99.  

    16. [16]

      Boulens P, Pellier E, Jeanneau E. Self-assembled Organometallic Nickel Complexes as Catalysts for Selective Dimerization of Ethylene into 1-Butene[J]. Organometallics, 2015,34(7):1139-1142. doi: 10.1021/acs.organomet.5b00055

    17. [17]

      Ainooson M K, Guzei I A, Spencer L C. Pyrazolylimine Iron and Cobalt, and Pyrazolylamine Nickel Complexes:Synthesis and Evaluation of Nickel Complexes as Ethylene Oligomerization Catalysts[J]. Polyhedron, 2013,53(4):295-303.  

    18. [18]

      PEI Haixiang, SHI Pengfei, CHEN Yanhui. Study on the Influence of Cr(Ⅲ) Complex/MAO on Catalytic Oligomerization of Ethylene[J]. Spec Petrochem, 2014,31(6):61-66. doi: 10.3969/j.issn.1003-9384.2014.06.015

    19. [19]

      Reagan W K, Freeman J W, Conroy B K. Process for the Preparation of a Catalyst for Olefin Polymerization: EP, EP0608447[P]. 2007.

    20. [20]

      Bollmann A, Blann K, Dixon J T. Ethylene Tetramerization:A New Route to Produce 1-Octene in Exceptionally High Selectivities[J]. J Am Chem Soc, 2004,126(45):14712-14713. doi: 10.1021/ja045602n

    21. [21]

      Overett M J, Blann K, Bollmann A. Carbon-Bridged Diphosphine Ligands for Chromium-Catalysed Ethylene Tetramerisation and Trimerisation Reactions[J]. J Mol Catal A-Chem, 2008,283(1/2):114-119.  

    22. [22]

      Kim S K, Kim T J, Chung J H. Bimetallic Ethylene Tetramerization Catalysts Derived from Chiral DPPDME Ligands:Syntheses, Structural Characterizations, and Catalytic Performance of[(DPPDME)CrCl3]2(DPPDME=S, S- and R, R-Chiraphos and meso-Achiraphos)[J]. Organometallics, 2014,29(22):5805-5811.  

    23. [23]

      Shaikh Y, Gurnham J, Albahily K. Aminophosphine-Based Chromium Catalysts for Selective Ethylene Tetramerization[J]. Organometallics, 2012,31(21):7427-7433. doi: 10.1021/om3007135

    24. [24]

      Jiang T, Zhang S, Jiang X. The Effect of N-Aryl Bisphosphineamine Ligands on the Selective Ethylene Tetramerization[J]. J Mol Catal A-Chem, 2008,279(1):90-93. doi: 10.1016/j.molcata.2007.10.009

    25. [25]

      Shaikh Y, Albahily K, Sutcliffe M. A Highly Selective Ethylene Tetramerization Catalyst[J]. Angew Chem Int Ed, 2012,124(6):1395-1398. doi: 10.1002/ange.201106517

    26. [26]

      Chen Y, Zuo W, Hao P. Chromium(Ⅲ) Complexes Ligated by 2-(1-Isopropyl-2-benzimidazolyl)-6- (1-(arylimino)ethyl)pyridines:Synthesis, Characterization and Their Ethylene Oligomerization and Polymerization[J]. J Organomet Chem, 2008,693(4):750-762. doi: 10.1016/j.jorganchem.2007.11.049

    27. [27]

      Zhang J, Li A, Hor T S A. Ligand Effect on Ethylene Trimerisation with[NNN]-Heteroscorpionate Pyrazolyl Cr(Ⅲ) Catalysts[J]. Dalton Trans, 2009,42(42):9327-9333.  

    28. [28]

      Overett M J, Blann K, Bollmann A. Ethylene Trimerisation and Tetramerisation Catalysts with Polar-substituted Diphosphinoamine Ligands[J]. Chem Commun, 2005,2005(5)622.  

    29. [29]

      Mcguinness D S, Wasserscheid P, Keim W. Novel Cr-PNP Complexes as Catalysts for the Trimerisation of Ethylene[J]. Cheminform, 2003,34(23):334-335.  

    30. [30]

      Killian E, Blann K, Bollmann A. The Use of Bis(diphenylphosphino)amines with N-Aryl Functionalities in Selective Ethylene Tri- and Tetramerisation[J]. J Mol Catal A-Chem, 2007,270(1):214-218.  

    31. [31]

      Albahily K, Fomitcheva V, Gambarotta S. Preparation and Characterization of a Reduced Chromium Complex via Vinyl Oxidative Coupling:Formation of a Self-activating Catalyst for Selective Ethylene Trimerization[J]. J Am Chem Soc, 2011,133(16):6380-6387. doi: 10.1021/ja200593k

    32. [32]

      Yang Y, Liu Z, Liu B. Selective Ethylene Tri-/Tetramerization by in Situ-Formed Chromium Catalysts Stabilized by N, P-Based Ancillary Ligand Systems[J]. ACS Catal, 2013,3(10):2353-2361. doi: 10.1021/cs4004968

    33. [33]

      Stennett T E, Haddow M F, Wass D F. Avoiding MAO:Alternative Activation Methods in Selective Ethylene Oligomerization[J]. Organometallics, 2012,31(19):6960-6965. doi: 10.1021/om300739m

    34. [34]

      WANG Jun, GAO Rui, YU Yanlong. Synthesis and Catalytic Performance of Novel Dendritic PNP Chromium Catalysts[J]. Chem J Chinese Univ, 2017,38(7):1257-1263.  

    35. [35]

      Wang J, Li C Q, Zhang S Y. Synthesis and Characterization of Lower Generation Broom Molecules[J]. Chinese Chem Lett, 2008,19(1):43-46. doi: 10.1016/j.cclet.2007.11.009

    36. [36]

      WANG Qiuan, FAN Huafang, LIAO Tougen. Technical Handbook of Organic Chemistry Laboratory[M]. Beijing:Chemical Industry Press, 2012:201-221(in Chinese).

    37. [37]

      NING Yongcheng. Structural Identification and Organic Spectroscopy of Organic Compounds[M]. Beijing:Science Press, 2014(in Chinese).

    38. [38]

      ZHANG Danfeng, SUN Yue, DENG Xiaojuan. Synthesis and Catalytic Ethylene Polymerization of Di(β-Hydroxyimine) Titanium Dichloride Complex[J]. Chem J Chinese Univ, 2012,33(9):2121-2128.  

    39. [39]

      SHI Weiguang, FU Zijian, WANG Sihan. Synthesis of Hyperbranched Salicylaldimine Nickel Catalyst and Its Catalytic Performance for Ethylene Oligomerization with Isopropylamine as a Nuclear[J]. Chem Ind Eng Prog, 2017,36(5):1727-1733.  

    40. [40]

      Pokutsa A P, Sheparovich R B, Zaborovskii A B. Mild Oxidation of Cyclohexane Catalyzed by Cobalt(Ⅱ) Acetate and Initiated by H2O2 in the Acetic Acid Medium[J]. Kinet Catal, 2002,43(5):691-697. doi: 10.1023/A:1020608230633

    41. [41]

      Malgas-enus R. The Preparation and Characterization of Multinuclear Catalysts Based on Novel Dendrimers: Application in the Oligomerization and Polymerization of Unsaturated Hydrocarbons[D]. Stellenbosch: University of Stellenbosch, 2011: 163.

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(1)
  • Abstract views(344)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return