Electrochemical Determination of the Specific Genetic Sequence in Transgenic Maize Using Reduced Graphene Oxide and Nano Zirconia Composites as a Platform for Immobilizing DNA
- Corresponding author: WANG Xueliang, qust-1977wxl@163.com
Citation:
WANG Xueliang, WANG Zhaoxia, WANG Tao, DAI Xiaohui. Electrochemical Determination of the Specific Genetic Sequence in Transgenic Maize Using Reduced Graphene Oxide and Nano Zirconia Composites as a Platform for Immobilizing DNA[J]. Chinese Journal of Applied Chemistry,
;2019, 36(7): 839-846.
doi:
10.11944/j.issn.1000-0518.2019.07.180378
Tam P D. Genetically Modified Organism(GMO) Detection by Biosensor Based on SWCNT Material[J]. Curr Appl Phys, 2015,15(3):397-401. doi: 10.1016/j.cap.2015.01.017
Deisingh A K, Badrie N. Detection Approaches for Genetically Modified Organisms in Foods[J]. Food Res Int, 2005,38:639-649. doi: 10.1016/j.foodres.2005.01.003
Arugula M A, Zhang Y, Simonian A L. Biosensors as 21st Century Technology for Detecting Genetically Modified Organisms in Food and Feed[J]. Anal Chem, 2014,86(1):119-129.
European Commission. Regulation(EC) No.1830/2003 Concerning the Traceability and Labelling of Genetically Modified Organisms and the Traceability of Food and Feed Products Produced from Genetically Modified Organisms and Amending Directive 2001/18/EC[J]. Off J Eur Union, 2003,268:L24-L28.
Ahmed F E. Detection of Genetically Modified Organism in Food[J]. Trends Biotechnol, 2002,20(5):215-223. doi: 10.1016/S0167-7799(01)01920-5
Vollenhofer S, Burg K, Schmidt J. Genetically Modified Organisms in Food Screening and Specific Detection by Polymerase Chain Reaction[J]. J Agric Food Chem, 1999,47(12):5038-5043. doi: 10.1021/jf990353l
Mafra I, Ferreira I, Oliveira M. Food Authentication by PCR-Based Methods[J]. Eur Food Res Technol, 2008,227(3):649-665. doi: 10.1007/s00217-007-0782-x
Gašparič M B, Tengs T, La Paz J L. Comparison of Nine Different Real-Time PCR Chemistries for Qualitative and Quantitative Applications in GMO Detection[J]. Anal Bioanal Chem, 2010,396(6):2023-2029. doi: 10.1007/s00216-009-3418-0
Manzanares-Palenzuela C L, Mafra I, Costa J. Electrochemical Magneto-Assay Coupled to PCR as a Quantitative Approach to Detect the Soybean Transgenic Event GTS40-3-2 in Foods[J]. Sens Actuators B, 2016,222:1050-1057. doi: 10.1016/j.snb.2015.09.013
Ma Y, Jiao K, Yang T. Sensitive PAT Gene Sequence Detection by Nano-SiO2/p-Aminothiophenol Self-assembled Films DNA Electrochemical Biosensor Based on Impedance Measurement[J]. Sens Actuators B, 2008,131(2):565-571. doi: 10.1016/j.snb.2007.12.046
Yang T, Zhang W, Du M. A PDDA/Poly(2, 6-Pyridinedicarboxylic Acid)-CNTs Composite Film DNA Electrochemical Sensor and Its Application for the Detection of Specific Sequences Related to PAT Gene and NOS Gene[J]. Talanta, 2008,75(4):987-994. doi: 10.1016/j.talanta.2007.12.049
Jiang C, Yang T, Jiao K. A DNA Electrochemical Sensor with Poly-L-Lysine/Single-Walled Carbon Nanotubes Films and Its Application for the Highly Sensitive EIS Detection of PAT Dene Fragment and PCR Amplification of NOS Gene[J]. Electrochim Act, 2008,53(6):2917-2924. doi: 10.1016/j.electacta.2007.11.015
Zhang D D, Li L Z, Ma W N. Electrodeposited Reduced Graphene Oxide Incorporating Polymerization of L-Lysine on Electrode Surface and Its Application in Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid[J]. Mater Sci Eng C, 2017,70:241-249. doi: 10.1016/j.msec.2016.08.078
Zhou M, Wang Y L, Zhai Y M. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films[J]. Chem Eur J, 2009,15:6116-6120. doi: 10.1002/chem.v15:25
Guo H L, Wan X F, Qian Q Y. A Green Approach to the Synthesis of Graphene Nanosheets[J]. ACS Nano, 2009,3(9):2653-2659. doi: 10.1021/nn900227d
Wang J F, Yang S L, Guo D Y. Comparative Studies on Electrochemical Activity of Graphene Nanosheets and Carbon Nanotubes[J]. Electrochem Comm, 2009,11(10):1892-1895. doi: 10.1016/j.elecom.2009.08.019
Shao Y Y, Wang J, Engelhard M. Facile and Controllable Electrochemical Reduction of Graphene Oxide and Its Applications[J]. J Mater Chem, 2010,20:743-748. doi: 10.1039/B917975E
Yang T, Li X, Li Q H. Electrochemically Reduced Graphene Oxide-Enhanced Electropolymerization of Poly-Xanthurenic Acid for Direct[J]. Polym Chem, 2013,4:1228-1234. doi: 10.1039/C2PY20655B
Xu Y, Gao M, Zhang G. Electrochemically Reduced Graphene Oxide with Enhanced Electrocatalytic Activity Toward Tetracycline Detection[J]. Chinese J Catal, 2015,36(11):1936-1942. doi: 10.1016/S1872-2067(15)60956-1
Sun W, Lu Y, Wu Y. Electrochemical Sensor for Transgenic Maize MON810 Sequence with Electrostatic Adsorption DNA on Electrochemical Reduced Graphene Modified Electrode[J]. Sens Actuators B, 2014,202(31):160-166.
Gao F, Qi X, Cai X. Electrochemically Reduced Graphene Modified Carbon Ionic Liquid Electrode for the Sensitive Sensing of Rutin[J]. Thin Solid Films, 2012,520(15):5064-5069. doi: 10.1016/j.tsf.2012.03.002
Fang M M, David M K, Anthony C S. A "Mix and Match" Ionic-Covalent Strategy for Self-Assembly of Inorganic Multilayer Films[J]. J Am Chem Soc, 1997,119(50):12184-12191. doi: 10.1021/ja972569e
Zhang W, Yang T, Jiang C. DNA Hybridization and Phosphinothricin Acetyltransferase Gene Sequence Detection Based on Zirconia/Nanogold Film Modified Electrode[J]. Appl Surf Sci, 2008,254(15):4750-4756. doi: 10.1016/j.apsusc.2008.01.102
Sun W, Wang X, Wang W. Electrochemical DNA Sensor for Staphylococcus aureus Nuc Gene Sequence with Zirconia and Graphene Modified Electrode[J]. J Solid State Electrochem, 2015,19(8):2431-2438. doi: 10.1007/s10008-015-2893-9
Renuka L, Anantharaju K S, Sharma S C. A Comparative Study on the Structural, Optical, Electrochemical and Photocatalytic Properties of ZrO2 Nanooxide Synthesized by Different Routes[J]. J Alloys Comp, 2017,695:382-395. doi: 10.1016/j.jallcom.2016.10.126
Yang J, Jiao K, Yang T. A DNA Electrochemical Sensor Prepared by Electrodepositing Zirconia on Composite Films of Single-Walled Carbon Nanotubes and Poly(2, 6-Pyridinedicarboxylic Acid), and Its Application to Detection of the PAT Gene Fragment[J]. Anal Bioanal Chem, 2007,389(3):913-921.
Yang J, Wang X L, Shi H Q. An Electrochemical DNA Biosensor for Highly Sensitive Detection of Phosphinothricin Acetyltransferase Gene Sequence Based on Polyaniline-(Mesoporous Nanozirconia)/Poly-Tyrosine Film[J]. Sens Actutators B, 2012,162(1):178-183. doi: 10.1016/j.snb.2011.12.064
Zou Y J, Sun L, Xu X F. Biosensor Based on Polyaniline-Prussian Blue/Multi-walled Carbon Nanotubes Hybrid Composites[J]. Biosens Bioelectron, 2007,22(11):2669-2674. doi: 10.1016/j.bios.2006.10.035
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Peiwen Liu , Fang Zhao , Jing Zhang , Yunpeng Bai , Jinxing Ye , Bo Bao , Xinggui Zhou , Li Zhang , Changlu Zhou , Xinhai Yu , Peng Zuo , Jianye Xia , Lian Cen , Yangyang Yang , Guoyue Shi , Lin Xu , Weiping Zhu , Yufang Xu , Xuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020
Ling Yang , Min Ren , Jie Wang , Liming He , Shanshan Wu , Shuai Yang , Wei Zhao , Hao Cheng , Xiaoming Zhou , Maling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822
Jun-Ming Cao , Kai-Yang Zhang , Jia-Lin Yang , Zhen-Yi Gu , Xing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Yan Liu , Yang Wang , Jiayi Zhu , Xuxian Su , Xudong Lin , Liang Xu , Xiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
Fengyun Li , Zerong Pei , Shuting Chen , Gen li , Mengyang Liu , Liqin Ding , Jingbo Liu , Feng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328
Meihui Liu , Xinyuan Zhou , Xiao Li , Zhenjie Xue , Tie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327