Citation: WU Dan, WANG Tinglan, WANG Jinglin, YAO Yuan, TANG Songchao. A Durable Hydrophobic Surface Fabricated Through Stereocomplexation and Self-assembly[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 622-630. doi: 10.11944/j.issn.1000-0518.2019.06.190049 shu

A Durable Hydrophobic Surface Fabricated Through Stereocomplexation and Self-assembly

  • Corresponding author: YAO Yuan, yaoyuan@ecust.edu.cn TANG Songchao, schtang@ecust.edu.cn
  • Received Date: 23 February 2019
    Revised Date: 8 March 2019
    Accepted Date: 15 March 2019

    Fund Project: the National Natural Science Foundation of China 51573088the Major Projects in Shanghai 18JC1410802Supported by the National Natural Science Foundation of China(No.51573088), the Major Projects in Shanghai(No.18JC1410802)

Figures(9)

  • Triblock copolymer, poly(D-lactide)-b-polydimethylsiloxane-b-poly(D-lactide)(PDLA-b-PDMS-b-PDLA), was synthesized by ring-opening polymerization of D-lactide, and then its solution was coated onto the surface of poly(L-lactide)(PLLA) in a vail filled with non-solvent vapor. During the slow deposition process, PDMS with low surface energy was introduced to the PLLA surface. Meanwhile, PDLA segments stereocomplexed with the PLLA segments on the surface. A hydrophobic layer composed of stereocomposite submicron particles was formed on the surface of PLLA through the stereocomplexation between PLLA and PDLA-b-PDMS-b-PDLA and the self-assembly of PDLA-b-PDMS-b-PDLA. The influences of polymer solution concentration, assembly temperature and solvent on the surface morphology and the hydrophobicity of PLLA surface were further studied. With the increase of the concentration of PDLA-b-PDMS-b-PDLA, the hydrophobic behavior of the surface showed a transformation from Wenzel to Cassie status, and then returned to Wenzel status. When the assembly temperature was 0℃ and a 2 g/L PDLA-b-PDMS-b-PDLA/CH2Cl2 solution was deposited on the PLLA surface, the contact angle was 151°. When the assembly temperature raised to 30℃, the surface contact angle was 144° and the rolling angle was 5°. The obtained surface morphology and hydrophobicity were also varied with solvents with different solubility and volatilization rate. In addition, the hydrophobic surface of PLLA products can be achieved by means of stereocomplexation and self-assembly. By varying the concentration of PDLA-b-PDMS-b-PDLA solutions, the surface of PLLA products would eventually assembles into a "pearl necklace" shaped bicontinuous network structure. Because the surface of PLLA and the submicron particles were all connected with stereocomplexed PLLA/PDLA chains, the hydrophobic layer exhibited good durability against knife-scratch, tape-peel and finger-wipe tests. After the knife-scratch test and the tape peel test, the contact angle of the surface of the PLLA products was only slightly reduced, and the micro-spherical appearance of the PLLA surface existed after test.
  • 加载中
    1. [1]

      Chen S, Song Y, Xu F. Highly Transparent and Hazy Cellulose Nanopaper Simultaneously with a Self-cleaning Superhydrophobic Surface[J]. ACS Sustainable Chem Eng, 2018,6(4):5173-5181. doi: 10.1021/acssuschemeng.7b04814

    2. [2]

      Song J, Gao M, Zhao C. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State[J]. ACS Nano, 2017,11(9):9259-9267. doi: 10.1021/acsnano.7b04494

    3. [3]

      Sang-Hyeon L, Minho S, Kyu K M. Tunable Multimodal Drop Bouncing Dynamics and Anti-icing Performance of a Magnetically Responsive Hair Array[J]. ACS Nano, 2018,12(11):10693-10702. doi: 10.1021/acsnano.8b05109

    4. [4]

      Jeeva J K, Palanivelu K. Facile Fabrication of Core-Shell Pr6O11-ZnO Modified Silane Coatings for Anti-corrosion Applications[J]. Appl Surf Sci, 2014,288:60-68. doi: 10.1016/j.apsusc.2013.09.112

    5. [5]

      Han Z, Feng X, Guo Z. Flourishing Bioinspired Antifogging Materials with Superwettability:Progresses and Challenges[J]. Adv Mater, 2018,30(13)1704652. doi: 10.1002/adma.v30.13

    6. [6]

      YE Wenbo, HUANG Shijun, GUAN Huanmin. Preparation and Properties of Superhydrophobic Polysiloxane Coatings[J]. Chinese J Appl Chem, 2012,29(10):1123-1129.  

    7. [7]

      Jakobi V, Schwarze J, Finlay J A. Amphiphilic Alginates for Marine Antifouling Applications[J]. Biomacromolecules, 2018,19(2):402-408. doi: 10.1021/acs.biomac.7b01498

    8. [8]

      Zhang P, Yang L, Li Q. Ellipsoidal Colloids with a Controlled Surface Roughness via Bioinspired Surface Engineering:Building Blocks for Liquid Marbles and Superhydrophobic Surfaces[J]. ACS Appl Mater Interfaces, 2017,9(8):7648-7657. doi: 10.1021/acsami.6b16733

    9. [9]

      Onda T, Shibuichi S, Satoh N. Super-Water-Repellent Fractal Surfaces[J]. Langmuir, 1996,12(9):2125-2127. doi: 10.1021/la950418o

    10. [10]

      Shiu J Y, Kuo C W, Chen P. Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography[J]. Chem Mater, 2004,16(4):561-564. doi: 10.1021/cm034696h

    11. [11]

      Lau K K S, Bico J, Teo K B K. Superhydrophobic Carbon Nanotube Forests[J]. Nano Lett, 2003,3(12):1701-1705. doi: 10.1021/nl034704t

    12. [12]

      Wang T, Chen K, Sun X. Preparation of a Super-hydrophobic Zinc Coating with a Hierarchical Structure Inherited from the Indicalamus Leaf Through Electroplating[J]. Adv Mater Interfaces, 2018,5(8):1-6.  

    13. [13]

      Montano-Figueroa A G, Alcantar-Pena J J, Tirado P. Tailoring of Polycrystalline Diamond Surfaces from Hydrophilic to Superhydrophobic via Synergistic Chemical Plus Micro-structuring Processes[J]. Carbon, 2018,139:361-368. doi: 10.1016/j.carbon.2018.06.062

    14. [14]

      Bai F, Wu J, Gong G. Biomimetic "Water Strider Leg" with Highly Refined Nanogroove Structure and Remarkable Water-Repellent Performance[J]. ACS Appl Mater Interfaces, 2014,6(18):16237-16242. doi: 10.1021/am5044054

    15. [15]

      Chen L, Hong Z, Li G. Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells[J]. Adv Mater, 2010,21(14/15):1434-1449.  

    16. [16]

      Zhang X, Chen R, Hu J. Superhydrophobic Surface Constructed on Electrodeposited Silica Films by Two-Step Method for Corrosion Protection of Mild Steel[J]. Corros Sci, 2016,104:336-343. doi: 10.1016/j.corsci.2015.12.028

    17. [17]

      Joung Y S, Buie C R. Antiwetting Fabric Produced by a Combination of Layer-by-Layer Assembly and Electrophoretic Deposition of Hydrophobic Nanoparticles[J]. ACS Appl Mater Interfaces, 2015,7(36):20100-20110. doi: 10.1021/acsami.5b05233

    18. [18]

      HUANG Chunmei, ZHANG Meng, WANG Donghui. Fabrication of Polymeric Micropheres by Breath Figures in Different Nonsolvent Atmospheres[J]. Acta Polym Sin, 2014(12):1606-1612.  

    19. [19]

      Xiong X, Zou W, Yu Z. Microsphere Pattern Prepared by a "Reverse" Breath Figure Method[J]. Macromolecules, 2009,42:9351-9356. doi: 10.1021/ma9018119

    20. [20]

      De León A S, Muñoz-Bonilla A. Breath Figures Method to Control the Topography and the Functionality of Polymeric Surfaces in Porous Films and Microspheres[J]. J Polym Sci Polym Chem, 2012,50(5):851-859. doi: 10.1002/pola.v50.5

    21. [21]

      Xiao X, Bai W, Lin J. Strategy for Self-assembly of the Poly(9, 9-Dihexylfluorene) to Microspheres:Optimizing the Self-assembling Conditions[J]. Polym Bull, 2014,71(8):2103-2112. doi: 10.1007/s00289-014-1175-5

    22. [22]

      Wan L, Lv J, Ke B. Facilitated and Site-Specific Assembly of Functional Polystyrene Microspheres on Patterned Porous Films[J]. ACS Appl Mater Interfaces, 2010,2(12):3759-3765. doi: 10.1021/am1009277

    23. [23]

      Ke Q, Liao Y, Lin M. A Superhydrophobic Film with High Water Vapor Transmission Prepared from Block Copolymer Micelle Solution via VIPS Method[J]. J Polym Res, 2015,22(11):1-9.  

    24. [24]

      Xiao X, Bai W, Cai L. Solvent-Induced Controllable Self-Assembly of Poly(9, 9-Dihexylfluorene)[J]. Chem Lett, 2014,43(3):331-333.  

    25. [25]

      Brockway L, Berryman L, Taylor H. Nonsolvent-Induced Phase Separation Synthesis of Superhydrophobic Coatings Composed of Polyvinylidene Difluoride Microspheres with Tunable Size and Roughness[J]. Prog Org Coat, 2018,119:230-238. doi: 10.1016/j.porgcoat.2017.12.013

    26. [26]

      Khoddami A, Avinc O, Mallakpour S. A Novel Durable Hydrophobic Surface Coating of Poly(Lactic Acid) Fabric by Pulsed Plasma Polymerization[J]. Prog Org Coat, 2010,67(3):311-316. doi: 10.1016/j.porgcoat.2009.10.028

    27. [27]

      Yu H, Zhang H, Song M. From Celluloses Nanospheres, Nanorod to Nanofibers:Various Aspect Ratios Induced Different Nucleation/Reinforcing Effect on Polylactic Acid for Robust-Barrier Food Packaging[J]. ACS Appl Mater Interfaces, 2017,9:43920-43938. doi: 10.1021/acsami.7b09102

    28. [28]

      SUN Bin, LIU Yanlong, BIAN Xinchao. Preparation of High Heat Resistance Polylactide by Stereocomplexation[J]. Chinese J Appl Chem, 2016,33(9):1033-1039.  

    29. [29]

      Nikos P, David W, Andrew P. Crystallization-Driven Sphere-to-Rod Transition of Poly(Lactide)-b-Poly(acrylicacid) Diblock Copolymers:Mechanism and Kinetics[J]. Soft Matter, 2012,8(28):7408-7414. doi: 10.1039/c2sm25247c

    30. [30]

      Lodge T P. Block Copolymers: Past Successes and Future Challenges[J]. Macromol Chem Phys, 2003,204(2):265-273. doi: 10.1002/macp.200290073

    31. [31]

      Mei L, Ren Y, Gu Y. Strengthened and Thermally Resistant Poly(lactic acid) Based Composite Nanofibers Prepared via Easy Stereocomplexation with Antibacterial Effects[J]. ACS Appl Mater Interfaces, 2018,10(49):42992-43002. doi: 10.1021/acsami.8b14841

    32. [32]

      Lafuma A, Quere D. Superhydrophobic States[J]. Nat Mater, 2003,2(7):457-460. doi: 10.1038/nmat924

  • 加载中
    1. [1]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    10. [10]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    11. [11]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

Metrics
  • PDF Downloads(6)
  • Abstract views(1246)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return