Citation: CHENG Xiaodong, ZHANG Zheng. Preparation and Chromatographic Evaluation of a L-Isoleucine-Bonded Chromatographic Stationary Phase[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 726-732. doi: 10.11944/j.issn.1000-0518.2019.06.180356 shu

Preparation and Chromatographic Evaluation of a L-Isoleucine-Bonded Chromatographic Stationary Phase

  • Corresponding author: CHENG Xiaodong, shapaozi1995@163.com
  • Received Date: 8 November 2018
    Revised Date: 11 January 2019
    Accepted Date: 4 March 2019

    Fund Project: the Project of the Science and Technology Department in Guizhou Province LH[2015]7714the Project of the Science and Technology Department in Guizhou Province Qian ke he ji chu [2017]1169the Project for the Growth of Young Science and Technology Talents in Guizhou Province Qian jiao he KY[2018]422Supported by the Project of the Science and Technology Department in Guizhou Province(No.Qian ke he ji chu [2017]1169), the Project for the Growth of Young Science and Technology Talents in Guizhou Province(No.Qian jiao he KY[2018]422), the Project of the Science and Technology Department in Guizhou Province(No.LH[2015]7714)

Figures(6)

  • L-Isoleucine-bonded silica stationary phase was prepared starting from L-isoleucine and 3-isocyanatopropyltriethoxysilane, and further reaction between the resulting L-isoleucine functionalized silane coupling agents and activated silica. The result of 1H NMR spectroscopy showed that the expected L-isoleucine functionalized silane was successfully synthesized. The successful grafting was further confirmed by elemental analysis. The synthesized stationary phase was slurry-packed into stainless steel columns(150 mm×4.6 mm). A set of typical polar compounds were employed to evaluate the chromatographic behaviors on the stationary phase in hydrophilic interaction liguid chromatography(HILIC) mode. Increased retention factors were observed for these compounds with the increase of acetonitrile(ACN) content in the mobile phase, demonstrating a typical HILIC retention characteristics. Additionally, the effect of various parameters, such as ACN content, pH values and ionic strength of the mobile phase on the retention of the tested solutes were investigated. Under optimized conditions, 5 basic compounds, 6 water-soluble vitamins and 8 nucleosides were successfully separated within 8 min, 18 min and 25 min, respectively, by isocratic elution. The resulting separation chromatogram exhibits remarkable chromatographic performance, demonstrating the excellent application potential of the L-isoleucine-bonded silica stationary phase in the separation of polar compounds.
  • 加载中
    1. [1]

      DONG Xuefang, CAI Xiaoming, SHEN Aijin. Development and Application of Separation Materials for Mixed-Mode Chromatography[J]. Chinese J Chromatogr, 2013,31(4):297-302.  

    2. [2]

      PU Jianghua, ZHAO Xia, HAN Wenwei. Application of Hydrophilic Interaction Chromatography in Analysis of Carbohydrates[J]. J Instrum Anal, 2017,36(1):145-150.  

    3. [3]

      Alpert A J. Hydrophilic-Interaction Chromatography for the Separation of Peptides, Nucleic Acids and Other Polar Compounds[J]. J Chromatogr, 1990,499(2):177-196.  

    4. [4]

      Regnier F E, Noel R. Glycerolpropylsilane Bonded Phases in the Steric Exclusion Chromatography of Biological Macromolecules[J]. J Chromatogr Sci, 1976,14(7):316-320. doi: 10.1093/chromsci/14.7.316

    5. [5]

      Wu J, Bicker W, Lindner W. Separation Properties of Novel and Commercial Polar Stationary Phases in Hydrophilic Interaction and Reversed-Phase Liquid Chromatography Mode[J]. J Sep Sci, 2008,31(9):1492-1503. doi: 10.1002/(ISSN)1615-9314

    6. [6]

      Risley D S, Strege M A. Chiral Separations of Polar Compounds by Hydrophilic Interaction Chromatography with Evaporative Light Scattering Detection[J]. Anal Chem, 2000,72(8):1736-1739. doi: 10.1021/ac9911490

    7. [7]

      Nguyen H P, Schug K A. The Advantages of ESI-MS Detection in Conjunction with HILIC Mode Separations:Fundamentals and Applications[J]. J Sep Sci, 2008,31(9):1465-1480. doi: 10.1002/(ISSN)1615-9314

    8. [8]

      JIN Gaowa, DING Junjie, CHEN Xue. Separation of Glucoside Compounds by Reversed-Phase and Hydrophilic Interaction Liquid Chromatography[J]. J Instrum Anal, 2014,33(2):133-137. doi: 10.3969/j.issn.1004-4957.2014.02.003

    9. [9]

      Qiu H, Loukotkov L, Sun P. Cyclofructan 6 Based Stationary Phases for Hydrophilic Interaction Liquid Chromatography[J]. J Chromatogr A, 2011,1218(2):270-279. doi: 10.1016/j.chroma.2010.11.027

    10. [10]

      Guo Y, Gaiki S. Retention Behavior of Small Polar Compounds on Polar Stationary Phases in Hydrophilic Interaction Chromatography[J]. J Chromatogr A, 2005,1074(1/2):71-80.  

    11. [11]

      Greco G, Letzel T. Main Interactions and Influences of the Chromatographic Parameters in HILIC Separations[J]. J Sep Sci, 2013,51(7):684-693.  

    12. [12]

      SHEN Aijin, GUO Zhimou, LIANG Xinmiao. Development and Application of Hydrophilic Interaction Liquid Chromatographic Stationary Phases[J]. Prog Chem, 2014,26(1):10-18.  

    13. [13]

      Buszewski B, Noga S. Hydrophilic Interaction Liquid Chromatography(HILIC)—A Powerful Separation Technique[J]. Anal Bioanal Chem, 2012,402(1):231-247. doi: 10.1007/s00216-011-5308-5

    14. [14]

      Jandera P. Stationary and Mobile Phases in Hydrophilic Interaction Chromatography:A Review[J]. Anal Chim Acta, 2011,692(1/2):1-25.  

    15. [15]

      García-Gómez D, Rodríguez-Gonzalo E, Carabias-Martínez R. Stationary Phases for Separation of Nucleosides and Nucleotides by Hydrophilic Interaction Liquid Chromatography[J]. Trend Anal Chem, 2013,47:111-128. doi: 10.1016/j.trac.2013.02.011

    16. [16]

      CHENG Xiaodong, FENG Yuqi. Preparation and Evaluation of N-Acryloyltris(hydroxymethyl) aminomethane-bonded Chromatographic Stationary Phase[J]. Chinese J Chromatogr, 2015,33(9):917-921.  

    17. [17]

      GUO Zhimou, ZHANG Xiuli, XU Qing. Stationary Phases for Hydrophilic Interaction Liquid Chromatography and Their Applications in Separation of Traditional Chinese Medicines[J]. Chinese J Chromatogr, 2009,27(5):675-681. doi: 10.3321/j.issn:1000-8713.2009.05.020

    18. [18]

      Olsen B A. Hydrophilic Interaction Chromatography Using Amino and Silica Columns for the Determination of Polar Pharmaceuticals and Impurities[J]. J Chromatogr A, 2001,913(1/2):113-122.  

    19. [19]

      HAN Xiaoqian, LIN Yunyun, LI Zhen. Preparation and Application of Novel Bonded L-Valine and L-Alanine Derived Chiral Stationary Phases[J]. Chinese J Appl Chem, 2018,35(1):68-74.  

    20. [20]

      Hayriye A, Çelik K S, Altındaǧ R. Synthesis, Characterization, and Application of a Novel Multifunctional Stationary Phase for Hydrophilic Interaction/Reversed Phase Mixed-Mode Chromatography[J]. Talanta, 2017,174(1):703-714.  

    21. [21]

      Hemstrom P, Irgum K. Hydrophilic Interaction Chromatography[J]. J Sep Sci, 2006,29(12):1784-1821. doi: 10.1002/(ISSN)1615-9314

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    8. [8]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

Metrics
  • PDF Downloads(1)
  • Abstract views(470)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return