Citation: LIU Yongjun, ZHOU Liyun, SHENG Shouri, SONG Cheng, HOU Haoqing, SONG Caisheng. Synthesis and Properties of Super-high Temperature Diketone Anhydride Polyimides[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 658-663. doi: 10.11944/j.issn.1000-0518.2019.06.180352 shu

Synthesis and Properties of Super-high Temperature Diketone Anhydride Polyimides

  • Corresponding author: SONG Cheng, sonyia416@gmail.com
  • Received Date: 6 November 2018
    Revised Date: 13 January 2019
    Accepted Date: 14 January 2019

    Fund Project: the National Natural Science Foundation of China 51663011Science and Technology Research Project of Jiangxi Provincial Department of Education GJJ170177Supported by the National Natural Science Foundation of China(No.51663011), Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ170177)

Figures(7)

  • A novel diketone anhydride polyimide was synthesized by introducing p-phenylenediamine(PPD) to 4, 4'-terephthaloyldiphthalic anhydride through the traditional two-step method in dimethylacetamide(DMAc). The properties of the polyimide were characterized by Fourier transform infrared spectrometer(FT-IR), wide-angle X-ray diffraction(WAXD), differential scanning calorimetric(DSC), dynamic thermomechanical analyzer(DMA), thermal gravimetric analysis(TGA), tensile test and ultraviolet-visible spectrophotometry(UV-Vis). The relationship between different thermal imidization temperature and the properties of the diketone polyimide was studied. The results showed that PAA formed the imide ring structure completely at 320℃. The polyimide had good film-forming performance and partially ordered aggregate structure. The polyimide had excellent thermal properties:the glass transition temperature(Tg) was 298℃ and the thermal decomposition temperature(T5%) was 523℃. The film had a tensile strength of 130 MPa and tensile modulus of 5.77 GPa at 320℃. The cutoff wavelength of the film was 375 nm and the film had good transmittance in visible region.
  • 加载中
    1. [1]

      WANG Jiaming. Technology Advances and Market Prospects of Polyimide Film[J]. Synth Technol Appl, 2012,37(3):24-29. doi: 10.3969/j.issn.1006-334X.2012.03.011

    2. [2]

      Min C Y, Liu D D, He Z B. Preparation of Novel Polyimide Nanocomposites with High Mechanical and Tribological Performance Using Covalent Modified Carbon Nanotubes via Friedel-Crafts Reaction[J]. Polymer, 2018,150:223-231. doi: 10.1016/j.polymer.2018.07.035

    3. [3]

      Cheng Y, Dong J, Yang C R. Synthesis of Poly(benzobisoxazole-co-imide) and Fabrication of High-Performance Fibers[J]. Polymer, 2017,133:50-59. doi: 10.1016/j.polymer.2017.11.015

    4. [4]

      Chen D, Zhu H, Liu T. In Situ Thermal Preparation of Polyimide Nanocomposite Films Containing Functionalized Graphene Sheets[J]. ACS Appl Mater Interfaces, 2010,2(12):3702-3708. doi: 10.1021/am1008437

    5. [5]

      YANG Shiyong. Progress in High Temperature Polyimide Resin[J]. Polym Bull, 2014(12):23-28.  

    6. [6]

      Pratt J R, Blackwell D A, Clair T L S. 4, 4′-Isophthaloyldiphthalic Anhydride Polyimides[J]. Polym Prepr, 1988,29(1):128-129.  

    7. [7]

      Pratt J R, Blackwell D A, St.clair T L. 4, 4′-Isophthaloyidiphthalic anhydride Polyimides[J]. Polym Eng Sci, 1989,29(1):63-68. doi: 10.1002/(ISSN)1548-2634

    8. [8]

      Pratt J R, St.clair T L, Progar D J. Processable Polyimide Adhesive and Matrix Composite Resin: US, 4937317 A[P]. 1990-06-26.

    9. [9]

      SONG Cheng, SONG Caisheng. A Preparation Method of 4, 4′-Terephthaloyldiphthalic and Its Products and Uses: CN201310384452[P]. 2013-08-29(in Chinese).

    10. [10]

      ZHAN Meidong, HONG Huiming, WANG Liyun. Synthesis and Properties of Organosolubile Dikentone Anhydride Copolymides[J]. Polym Mater Sci Eng, 2016,32(8):16-20.  

    11. [11]

      HU Shuncheng, CHEN Zhiqiang, HONG Huiming. The Synthesis and Characterization of Novel Thermoplastic Polyimide Based on Diketone Anhydride[J]. J Jiangxi Norm Univ(Nat Sci), 2016,40(4):415-419.  

    12. [12]

      Seo Y, Lee S M, Kim D Y. Kinetic Study of the Imidization of a Poly(ester amic acid) by FT-Raman Spectroscopy[J]. Macromolecules, 1997,30(13):3747-3753. doi: 10.1021/ma961482v

    13. [13]

      SONG Cheng, CHEN Zhiqiang, JIANG Yangcheng. Synthesis and Properties of 4, 4′-Terephthaloyldiphthalic/PMDA Anhydride Copolyimide[J]. Polym Mater Sci Eng, 2015,31(12):27-31.  

    14. [14]

      Vanherck K, Koeckelberghs G, Vankelecom I. Crosslinking Polyimides for Membrane Applications:A Review[J]. Prog Polym Sci, 2013,38:874-896. doi: 10.1016/j.progpolymsci.2012.11.001

    15. [15]

      Liaw D J, Wang K L, Huang Y C. Advanced Polyimide Materials:Syntheses, Physical Properties, and Applications[J]. Prog Polym Sci, 2012,37:907-974. doi: 10.1016/j.progpolymsci.2012.02.005

  • 加载中
    1. [1]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    2. [2]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    3. [3]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    14. [14]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    15. [15]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(412)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return