Citation: ZHU Deqin, SHENG Yu, ZHENG Shouyang, TONG Qingsong. Effect of the Melamine Polyphosphate/Pentaerythritol Ratio, Synergist Group and Surface Modification on Intumescent Flame Retardants of Polypropylene-Based Wood-Plastic Composites[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 649-657. doi: 10.11944/j.issn.1000-0518.2019.06.180339 shu

Effect of the Melamine Polyphosphate/Pentaerythritol Ratio, Synergist Group and Surface Modification on Intumescent Flame Retardants of Polypropylene-Based Wood-Plastic Composites

  • Corresponding author: SHENG Yu, dr.shengyu@163.com
  • Received Date: 26 October 2018
    Revised Date: 17 December 2018
    Accepted Date: 24 January 2019

    Fund Project: the Project in Industry-University Cooperation of Fujian Provincial Department of Science and Technology of China 2018Y4001Major Science and Technology Project in Industry-University Cooperation of Fujian Provincial Department of Science and Technology of China 2015Y4003Supported by the Project in Industry-University Cooperation of Fujian Provincial Department of Science and Technology of China(No.2018Y4001), Major Science and Technology Project in Industry-University Cooperation of Fujian Provincial Department of Science and Technology of China(No.2015Y4003)

Figures(6)

  • The effect of the mass ratio and composition of melamine polyphosphate(MPP)/pentaerythritol(PER) in intumescent flame retardants(IFRs), synergist group MgO/EG/SiO2 of which composition with m(MgO):m(expandable graphite, EG):m(SiO2)=1:5:5, and the silane coupling agent KH550 on the flame retardancy of polypropylene-based wood-plastic composites(WPC) were studied by means of limiting oxygen index(LOI), linear burning rate(LBR), thermogravimetric analysis and cone calorimetry. The results show that when m(MPP):m(PER)=23:2 in IFRs(code IFRs-M1) and its mass fraction is 25%, the flame retardant performance is the best, and LOI and LBR of the intumescent flame retardant composite WPC/IFRs-M1 are 27.1% and 3.89 mm/min, respectively, which are 48.1% higher and 89.79% lower than those of the unadded WPC. Compared with the unadded WPC, the heat release rate and total heat release during combustion decrease by 76.2% and 50.1%, the carbon residue rate at 600℃ increases by 498.3%, the total smoke emission reduces by 6.9%, and the release of CO2 drops by 65.4%. It also indicates that both the synergist group and KH550 surface treatment can further improve the flame retardant properties of WPC/IFRs-M1, and both have good flame retardant synergistic effect on IFRs-M1. Compared with WPC/IFRs-M1, LOI of WPC/IFRs-M1/MgO/EG/SiO2/KH550 with both flame retardant means mentioned above is enhanced by 3.7%, and its LBR declines by 20.3%. At the same time, its thermal stability significantly improves, the thermal weight loss goes down, and its heat release rate and total heat release during combustion reduce by 36.5% and 37.6%, respectively. Its carbon residue rate at 600℃ increases by 84.02%, the total smoke release reduces by 57.5%, and the amount of CO2 release reduces by 33.33%, indicating a better synergistic effect.
  • 加载中
    1. [1]

      Laoutid F, Bonnaud L, Alexandre M. New Prospects in Flame Retardant Polymer Materials:From Fundamentals to Nanocomposites[J]. Mater Sci Eng, 2009,63(3):100-125. doi: 10.1016/j.mser.2008.09.002

    2. [2]

      ZHANG Jinkai, MA Li, GE Weijuan. Research Status of Intumescent Flame-Retarded Polypropylene[J]. Mater Rev, 2015,29(5):68-72.  

    3. [3]

      Wu Z P, Hu Y C, Shu W Y. Effect of Ultrafine Zinc Borate on the Smoke Suppression and Toxicity Reduction of a Low-Density Polyethylene/Intumescent Flame-Retardant System[J]. J Appl Polym Sci, 2010,117(1):443-449.  

    4. [4]

      Ye L, Zhang Y J, Wang S H. Synergistic Effects and Mechanism of ZnCl2 on Intumescent Flame-Retardant Polypropylene[J]. J Therm Anal Calorim, 2014,115(2):1065-1071. doi: 10.1007/s10973-013-3381-z

    5. [5]

      Nie S B, Song L, Bao C L. Synergistic Effects of Ferric Pyrophosphate(FePP) in Intumescent Flame-Retardant Polypropylene[J]. Polym Adv Technol, 2011,22(6):870-876. doi: 10.1002/pat.v22.6

    6. [6]

      Dong Q X, Liu M M, Ding Y F. Synergistic Effect of DOPO Immobilized Silica Nanoparticles in the Intumescent Flame Retarded Polypropylene Composites[J]. Polym Adv Technol, 2013,24(8):732-739. doi: 10.1002/pat.v24.8

    7. [7]

      Qiao Z H, Tai Q L, Song L. Synergistic Effects of Cerium Phosphate and Intumescent Flame Retardant on EPDM/PP Composites[J]. Polym Adv Technol, 2011,22(12):2602-2608. doi: 10.1002/pat.v22.12

    8. [8]

      SHENG Yu, ZHENG Shouyang, ZHU Deqin. Orthogonal Optimization on Flame Retardant Polypropylene-Based Wood Plastic Composite[J]. J Northeast Forestry Univ, 2017,45(4):88-93. doi: 10.3969/j.issn.1000-5382.2017.04.018

    9. [9]

      WANG Zhangyu. Study on the Flame Retardance of Glass Fiber Rejnforeced Polyamide 6 and Polyamide 66 by Melamine Polyphosphate[D]. Chengdu: Sichuan University, 2007(in Chinese). 

    10. [10]

      GUO Wei. Study on Properties of Melamine Polyphosphate Flame Retarded Polyethylene/Wood Flour Composites[D]. Haerbin: Northeast Forestry University, 2016(in Chinese). 

    11. [11]

      WANG Qingwen, FANG Yiqun, GAO Hua, et al. Flame Retardant Wood Plastic Composite and Its Preparation Method: CN, 200910072237.X[P]. 2009-06-10(in Chinese).

    12. [12]

      Bai P, Li B, Gao S. Investigation on Flame Retardancy and Antidripping of New Intumescent Flame Retardant Polypropylene Film[J]. Polym Polym Compos, 2010,18(9):495-502.  

    13. [13]

      LI Xiaoyun, WANG Zhengzhou, LIANG Haojun. Flame Retardation of EVA Copolymer Using Melamine Phosphate and Pentaerythritol as Intumescent Flame Retardants[J]. Polym Mater Sci Eng, 2007,23(1):145-148. doi: 10.3321/j.issn:1000-7555.2007.01.036

    14. [14]

      WANG Yun, WANG Zhengzhou, HU Yuan. Study on Flame Retardation of Epoxy Resin Composites Containing Melamine Phosphate and Pentaerythritol[J]. Fire Saf Sci, 2008,17(2):88-92. doi: 10.3969/j.issn.1004-5309.2008.02.005

    15. [15]

      Nguyen T H, Hoang D Q, Kim J. Effect of Ammonium Polyphosphate and Melamine Pyrophosphate on Fire Behavior and Thermal Stability of Unsaturated Polyester Synthesized from Poly(ethylene terephthalate) Waste[J]. Macromol Res, 2018,26(1):22-28. doi: 10.1007/s13233-018-6004-5

    16. [16]

      Umemura T, Arao Y, Nakamura S. Synergy Effects of Wood Flour and Fire Retardants in Flammability of Wood-Plastic Composites[J]. Energy Procedia, 2014(56):48-56.  

    17. [17]

      ZHU Deqin, ZHENG Shouyang, SHENG Yu. Flame-Retardant Synergistic Effect of Synergists on Intumescent Flame-Retardant Wood Flour-Polypropylene Composites[J]. Chinese J Appl Chem, 2017,34(2):195-203.  

    18. [18]

      Ye L, Zhang Y J, Wang S H. Synergistic Effects and Mechanism of ZnCl2 on Intumescent Flame-Retardant Polypropylene[J]. J Therm Anal Calorim, 2014,115(2):1065-1071. doi: 10.1007/s10973-013-3381-z

    19. [19]

      Li B, He J M. Investigation of Mechanical Property, Flame Retardancy and Thermal Degradation of LLDPE-Wood-Fibre Composites[J]. Polym Degrad Stab, 2004,83(2):241-246. doi: 10.1016/S0141-3910(03)00268-4

  • 加载中
    1. [1]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    12. [12]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(1)
  • Abstract views(636)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return