Citation: LI Xinjie, XU He, YU Mei, ZHANG Chao, GUO Anru, LIU Chang. Nitrogen-Doped Graphitic Carbon Coated Cobalt Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reaction[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 571-577. doi: 10.11944/j.issn.1000-0518.2019.05.180266 shu

Nitrogen-Doped Graphitic Carbon Coated Cobalt Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reaction

  • Corresponding author: LIU Chang, liuchang1010@ciac.ac.cn
  • Received Date: 15 August 2018
    Revised Date: 12 October 2018
    Accepted Date: 29 November 2018

    Fund Project: the Young Elite Scientists Sponsorship Program by CAST 2017QNRC001Supported by the Young Elite Scientists Sponsorship Program by CAST(No.2017QNRC001)

Figures(4)

  • Electrocatalytic hydrogen evolution reaction(HER) provides one of the most important pathways for the crisis of energy consumption. The research of both highly efficient as well as highly stable non-noble metal electrocatalysts is the key point of commercial application of HER. In this paper, through direct pyrolysis of bimetallic ZnCo zeolitic imidazolate frameworks(ZIFs), the electrocatalyst of evenly distributed Co nanoparticle coated by nitrogen-doped graphitic carbon(V-Co@NC, V, vacancy) could be easily prepared. The existence of Zn element in the precursor could prevent efficiently the aggregation of Co nanoparticles, and help for the formation of uniformly distributed Co nanoparticles. Such unique nanostructure prevents direct contact between cobalt and electrolyte, promots their durability. Meanwhile, the existence of nitrogen dopants enhances the conductivity of catalyst, and contributes to the HER activity greatly. As a result, as-prepared V-Co@NC catalyst exhibits high electrocatalytic activity towards HER in both acidic and alkaline electrolyte, meanwhile the activity remains stable even after 5000 cycles. These performances indicate promising commercial application of the V-Co@NC catalyst. This work opens a new way for the development of HER electrocatalysts with both high activity and stability.
  • 加载中
    1. [1]

      Zou X, Zhang Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting[J]. Chem Soc Rev, 2015,44(15):5148-5180. doi: 10.1039/C4CS00448E

    2. [2]

      CHEN Si, SUN Lizhen, SHU Xinxin. Graphene-Based Catalysts for Efficient Electrocatalytic Applications[J]. Chinese J Appl Chem, 2018,35(3):272-285.  

    3. [3]

      Yan J, Zheng Y, Jaroniec M. Design of Electrocatalysts for Oxygen-and Hydrogen-Involving Energy Coversion Reactions[J]. Chem Soc Rev, 2015,44(8):2060-2086. doi: 10.1039/C4CS00470A

    4. [4]

      Moralesguio C G, Stern L, Hu X. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution[J]. Chem Soc G Rev, 2014,43(18):6555-6559. doi: 10.1039/C3CS60468C

    5. [5]

      Gong M, Li Y, Wang H. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation[J]. J Am Chem Soc, 2013,135(23):8452-8455. doi: 10.1021/ja4027715

    6. [6]

      YAO Huiying, YANG Tao, HUANG Xing. Coordination Complexes Based on MX4 Structure as Catalyst for Hydrogen Evolution Reaction[J]. Chinese J Appl Chem, 2018,35(3):328-341.  

    7. [7]

      Vrubel H, Hu X. Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in Both Acidic and Basic Solutions[J]. Angew Chem, 2012,124(51):12875-12878. doi: 10.1002/ange.v124.51

    8. [8]

      Arzac G M, Rojas T C, Fernandez A. Boron Compounds as Stabilizers of a Complex Microstructure in a Co-B-Based Catalyst for NaBH4 Hydrolysis[J]. ChemCatChem, 2011,3(8):1305-1313. doi: 10.1002/cctc.201100101

    9. [9]

      Ganem B, Osby J O. Synthetically Useful Reactions with Metal Boride and Aluminide Catalysts[J]. Chem Rev, 1986,86(5):763-780. doi: 10.1021/cr00075a003

    10. [10]

      Muir S, Yao X. Progress in Sodium Borohydride as a Hydrogen Storage Material:Development of Hydrolysis Catalysts and Reaction Systems[J]. Hydrogen Energy, 2011,36(10):5983-5997. doi: 10.1016/j.ijhydene.2011.02.032

    11. [11]

      Kong S, Wang H, Lu Z. CoSe2 Nanoparticles Grown on Carbon Fiber Paper:An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction[J]. J Am Chem Soc, 2014,136(13):4897-4900. doi: 10.1021/ja501497n

    12. [12]

      Kibsgaard J, Jaramillo T F. Molybdenum Phosphosulfide:An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction[J]. Angew Chem Int Ed, 2014,53(52):14433-14437. doi: 10.1002/anie.201408222

    13. [13]

      Xia B, Jiang Q, Zhao C. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications[J]. Adv Mater, 2016,28(1):77-85. doi: 10.1002/adma.201503906

    14. [14]

      Staszak-Jirkovsky J, Malliakas C D, Lopes P P. Design of Active and Stable Co-Mo-Sx Chalcogels as pH-Universal Catalysts for the Hydrogen Evolution Reaction[J]. Nat Mater, 2016,15(2):197-203. doi: 10.1038/nmat4481

    15. [15]

      Subbaraman R, Tripkovic D, Strmcnik D. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces[J]. Science, 2011,334(10):1256-1260.

    16. [16]

      Yin H, Zhao S, Zhao K. Ultrathin Platinum Nanowires Grown on Single-Layered Nickel Hydroxide with High Hydrogen Evolution Activity[J]. Nat Commun, 2015,66430. doi: 10.1038/ncomms7430

    17. [17]

      Kibsgaard J, Tsai C, Chan K. Designing an Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends[J]. Energy Environ Sci, 2015,8(10):3022-3029. doi: 10.1039/C5EE02179K

    18. [18]

      Tang C, Gan L, Zhang R. Ternary FexCo1-xP Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity:Experimental and Theoretical Insight[J]. Nano Lett, 2016,16(10):6617-6621. doi: 10.1021/acs.nanolett.6b03332

    19. [19]

      Popczun E J, McKone J R, Read C G. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction[J]. J Am Chem Soc, 2013,135(25):9267-9270.  

    20. [20]

      Ye R, Angel-Vicente P. del, Liu Y. High-Performance Hydrogen Evolution from MoS2(1-x)Px Solid Solution[J]. Adv Mater, 2016,28(7):1427-1432. doi: 10.1002/adma.v28.7

    21. [21]

      Jin Y, Wang H, Li J. Porous MoO2 Nanosheets as Non-noble Bifunctional Electrocatalysts for Overall Water Splitting[J]. Adv Mater, 2016,28(19):3785-3790. doi: 10.1002/adma.201506314

  • 加载中
    1. [1]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(3)
  • Abstract views(355)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return