Citation: LIU Yutong, ZHAO Mengyuan, LI Siyu, YANG Yifei, SUN Yue. Preparation of Molecularly Imprinted Polymers by Superoxide Dismutase-Catalyzed Electrochemically-Mediated Atom Transfer Radical Polymerization[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 585-594. doi: 10.11944/j.issn.1000-0518.2019.05.180258 shu

Preparation of Molecularly Imprinted Polymers by Superoxide Dismutase-Catalyzed Electrochemically-Mediated Atom Transfer Radical Polymerization

  • Corresponding author: SUN Yue, yuesun@lnnu.edu.cn
  • Received Date: 6 August 2018
    Revised Date: 25 September 2018
    Accepted Date: 18 December 2018

    Fund Project: National Natural Science Foundation of China 21304041the Liaoning Provincial Key Laboratory of Education L201683656Supported by National Natural Science Foundation of China(No.21304041), the Liaoning Provincial Key Laboratory of Education(No.L201683656), the Dalian High-level Talent Innovation Support Project(No.2016RQ047)the Dalian High-level Talent Innovation Support Project 2016RQ047

Figures(8)

  • Sensitive detection of metal-containing proteins is extremely important in pathology. Superoxide dismutase(SOD) was represented as metal-containing protein to prepare protein imprinted polymers(PIPs) and used for electrochemical biosensor. SOD was used as a template molecule and as a catalyst for electrochemically mediated atom transfer radical polymerization(eATRP) reaction to prepare SOD PIPs. This method does not require transition metal ions and owns the advantages of simple preparation, reagent saving, environmental protection, etc. In this experiment, we selected L-cysteine(L-cys) and nano gold modified gold electrode(Au/L-cys/nanoAu) as one working electrode for catalytic reduction of SOD, and initiator (4-mercaptophenyl 2-bromo-2-methylpropanoate, 4-HTP-Br) modified Au electrode as another working electrode for SOD PIPs modification. The electrode modified with PIPs was characterized by cyclic voltammetry(CV) and X ray photoelectron spectroscopy(XPS). Finally, the PIPs-modified electrode was used as a biosensor for the determination of SOD by differential pulse voltammetry(DPV) measurement. The linear range is 1.0×10-7 to 100 mg/L with the detection limit of 6.8×10-8 mg/L(S/N=3), the correlation coefficient is 0.995. Compared with other methods for detecting SOD, this method has a wider linear range and lower detection limits. This work is significant for the preparation of PIPs, eATRP catalyzed by proteins and the sensitive detection of metal-containing proteins.
  • 加载中
    1. [1]

      Wang Q, Yuan Z, Wu H. Molecular Characterization of a Manganese Superoxide Dismutase and Copper/Zinc Superoxide Dismutase from the Mussel Mytilus galloprovincialis[J]. Fish Shellfish Immunol, 2013,34(5):1345-1351. doi: 10.1016/j.fsi.2013.01.011

    2. [2]

      Olson K R, Gao Y, Arif F. Metabolism of Hydrogen Sulfide(H2S) and Production of Reactive Sulfur Species(RSS) by Superoxide Dismutase[J]. Redox Biol, 2018(15):74-85.  

    3. [3]

      Healy E F, Cervantes L. An in Silico Study of the Effect of SOD1 Electrostatic Loop Dynamics Amyloid-Like Filament Formation[J]. Eur Biophys J, 2016,45(8):1-7.  

    4. [4]

      Zhang L, Er J C, Jiang H. A Highly Selective Fluorogenic Probe for the Detection and In vivo Imaging of Cu/Zn Superoxide Dismutase[J]. Chem Commun, 2016,52(58):9093-9096. doi: 10.1039/C6CC00095A

    5. [5]

      Perry J J, Shin D S, Getzoff E D. The Structural Biochemistry of the Superoxide Dismutases[J]. Biochim Biophys Acta, 2010,1804(2):245-262. doi: 10.1016/j.bbapap.2009.11.004

    6. [6]

      Liu H, Liu L, Qin C. Mitochondrial Damage and Changes of Malondidehyde and Superoxide Dismutase in Acute Alcoholic Liver[J]. J Hubei Eng Univ, 2013,33(3):53-55.  

    7. [7]

      Corbisier P, Houbion A, Remacle J. A New Technique for Highly Sensitive Detection of Superoxide Dismutase Activity by Chemiluminescence[J]. Anal Biochem, 1987,164(1):240-247.  

    8. [8]

      Marcocci L, Mavelli I, Giulio AD. Room Temperature Electron Spin Resonance of Superoxide Dismutase-Loaded Liposomes and Erythrocytes. A Direct Approach to the Interaction of O2- with Cells[J]. Biochim Biophys Acta, 1989,979(1):99-104. doi: 10.1016/0005-2736(89)90528-2

    9. [9]

      Ukeda H, Kawana D, Maeda S. Spectrophotometric Assay for Superoxide Dismutase Based on the Reduction of Highly Water-Soluble Tetrazolium Salts by Xanthine-Xanthine Oxidase[J]. J Agric Chem Soc Jpn, 1999,63(3):485-488.  

    10. [10]

      XU Daguang, YIN Zhigang, HOU Xiaoqiang. Application and Progress of Ultraviolet-Visible Spectrophotometry in Drug Analysis[J]. Chinese J Med Phys, 2006,23(6):432-433. doi: 10.3969/j.issn.1005-202X.2006.06.010

    11. [11]

      Wang X, Dong S, Bai Q. Preparation of Lysozyme Molecularly Imprinted Polymers and Purification of Lysozyme from Egg White[J]. Biomed Chromatogr, 2014,28(6):907-912. doi: 10.1002/bmc.3207

    12. [12]

      Chen L, Wang X, Lu W. Molecular Imprinting:Perspectives and Applications[J]. Chem Soc Rev, 2016,45(8):2137-2211. doi: 10.1039/C6CS00061D

    13. [13]

      Yang L, Zhi L, Song C J. Evaluation the Separation Efficiency of Galangin Molecular Imprinted Polymers by HPLC[J]. J Chengde Med College, 2015,132(3):190-192.  

    14. [14]

      Yang Y, Wang X, Fang G. Electrochemiluminescence Analysis Based on Molecular Imprinting Technique[J]. Prog Chem, 2016,28(9):1351-1362.  

    15. [15]

      Dan R, Wang Y, Du L. The Synthesis of Molecular Imprinted Chitosan-Gels Copolymerized with Multiform Functional Monomers at Three Different Temperatures and the Recognition for the Template Ovalbumin[J]. Analyst, 2013,138(12):3433-3443. doi: 10.1039/c3an36930g

    16. [16]

      Erdogan-Haug B, Kavanagh M A, Aloshyna L M, et al. Crosslinkable Syrup Copolymers with Aminoalkyl (meth)Acryloyl Solvent Monomers: US, EP2556128.B1[P]. 2014-06-04.

    17. [17]

      JIANG Jigang. Research and Application of Molecular Imprinting Technology in Drug Analysis[J]. Shandong Normal Univ, 2003.  

    18. [18]

      Wu W T, Shen J, Li Y X. Specific Glucose-to-SPR Signal Transduction at Physiological pH by Molecularly Imprinted Responsive Hybrid Microgels[J]. Biomaterials, 2012,33(29):7115-7125. doi: 10.1016/j.biomaterials.2012.06.031

    19. [19]

      Turner N W, Liu X, Piletsky S A. Recognition of Conformational Changes in Lactoglobulin by Molecularly Imprinted Thin Films[J]. Biomacromolecules, 2007,8(9):2781-2787.  

    20. [20]

      Li H, Wang L. Highly Selective Detection of Polycyclic Aromatic Hydrocarbonsusing Multifunctional Magnetic-Luminescent Molecularly Imprinted Polymers[J]. ACS Appl Mater Interfaces, 2013,5(21):10502-10509. doi: 10.1021/am4020605

    21. [21]

      Wulff G, Liu J Q. Design of Biomimetic Catalysts by Molecular Imprinting in Synthetic Polymers:The Role of Transition State Stabilization[J]. Acc Chem Res, 2012,45(2):239-247. doi: 10.1021/ar200146m

    22. [22]

      Panagiotopoulou M, Beyazit S, Nestora S. Initiator-Free Synthesis of Molecularly Imprinted Polymers by Polymerization of Self-initiated Monomers[J]. Polymer, 2015,66:43-51. doi: 10.1016/j.polymer.2015.04.012

    23. [23]

      Tan L, Kang C C, Xu S Y. Selective Room Temperature Phosphorescence Sensing of Target Protein Using Mn-Doped ZnS QDs-Embedded Molecularly Imprinted Polymer[J]. Biosens Bioelectron, 2013,48(19):216-223.  

    24. [24]

      Zhang R, Xu S, Luo J. Molecularly Imprinted Photo-sensitive Polyglutamic Acid Nanoparticles for Electrochemical Sensing of Hemoglobin[J]. Microchim Acta, 2015,182(1/2):175-183.  

    25. [25]

      MAO Cheng, WEI Zhaoshui, DU Juntao. Research Progress of Acrylamide Polymer Radical Polymerization Initiation System[J]. Guangdong Chem Ind, 2013,40(14):126-127. doi: 10.3969/j.issn.1007-1865.2013.14.065

    26. [26]

      Qiu X, Wu Y, Chen D. Fabrication of Novel Stir Bar Sorptive Extraction Coating Based on Magnetic Molecularly Imprinted Polymer Through Atom Transfer Radical Polymerization for Trace Analysis of Estrogens in Milk[J]. J Nanosci Nanotechnol, 2016,16(12):12374-12381. doi: 10.1166/jnn.2016.12968

    27. [27]

      Sigg S J, Seidi F, Renggli K. Horseradish Peroxidase as a Catalyst for Atom Transfer Radical Polymerization[J]. Macromol Rapid Commun, 2011,32(21):1710-1715. doi: 10.1002/marc.201100349

    28. [28]

      Shanmugam S, Boyer C. Polymer Synthesis:Organic Photocatalysts for Cleaner Polymer Synthesis[J]. Science, 2016,352(6289):1053-1054. doi: 10.1126/science.aaf7465

    29. [29]

      Magenau A J, Strandwitz N C, Gennaro A. Electrochemically Mediated Atom Transfer Radical Polymerization[J]. Science, 2011,332(6025):81-84. doi: 10.1126/science.1202357

    30. [30]

      Silva T B, Spulber M, Kocik M K. Hemoglobin and Red Blood Cells Catalyze Atom Transfer Radical Polymerization[J]. Biomacromol, 2013,14(8):2703-2712. doi: 10.1021/bm400556x

    31. [31]

      Fodor C, Gajewska B, Rifaie-Graham O. Laccase-catalyzed Controlled Radical Polymerization of N-Vinylimidazole[J]. Polym Chem, 2016,7(43):6617-6625.  

    32. [32]

      SUN Yue, DU Hongying, LAN Yuting, et al. Preparation of Hemoglobin Imprinted Polymer by Autocatalytic ATRP: CN, 201510410654.6[P]. 2015-11-04(in Chinese).

    33. [33]

      Sun Y, Du H, Lan Y. Preparation of Hemoglobin(Hb) Imprinted Polymer by Hb Catalyzed eATRP and Its Application in Biosensor[J]. Biosens Bioelectron, 2016,77:894-900. doi: 10.1016/j.bios.2015.10.067

    34. [34]

      Sun Y, Du H Y, Deng Y. Preparation of Polyacrylamide via Surface-Initiated Electrochemical-Mediated Atom Transfer Radical Polymerization(SI-eATRP) for Pb2+ Sensing[J]. J Solid State Electrochem, 2016,20(1):105-113.  

    35. [35]

      Wang C L, Fen M A, Zheng H Y. Synthesis of Salicylic Acid Molecularly Imprinted Polymer Using Acrylamide as a Functional Monomer[J]. Fine Chem, 2007,24(8):729-728.  

    36. [36]

      Chen F F, Xie X Y, Shi Y P. Preparation of Magnetic Molecularly Imprinted Polymer for Selective Recognition of Resveratrol in Wine[J]. J Chromatogr A, 2013,1300(14):112-118.  

    37. [37]

      LIU Fen, ZHAO Zhijuan, QIU Limei. XPS Photoelectron Peak and Auger Electron Peak Position Table[J]. Anal Test Technol Instrum, 2009,15(1):1-17. doi: 10.3969/j.issn.1006-3757.2009.01.001

    38. [38]

      HE Xiaoying, WEI Wei, SONG Tao. Electrochemical Behavior of Superoxide Dismutase on the Gold Nanoparticles/L-Cysteine/Au Modified Electrode[J]. Chem Res Appl, 2012,24(8):1192-1196. doi: 10.3969/j.issn.1004-1656.2012.08.005

    39. [39]

      Zhidkova T V, Proskurnina E V, Parfenov E A. Determination of Superoxide Dismutase and SOD-Mimetic Activities by a Chemical System:Co2/H2O2/Lucigenin[J]. Anal Bioanal Chem, 2011,401(1):381-386. doi: 10.1007/s00216-011-5070-8

    40. [40]

      YANG Tangbin, LIU Zhenxiu, WAN Yumin. Enzyme Immunoassay for Cuprozinc-Superoxide Dismutase in Whole Blood and Urine During Head down Bed Rest[J]. Space Med Med Eng, 1998(3):162-166.  

    41. [41]

      WEI Wei. Research and Application of Optical Probes Interaction with Copper-Zinc Superoxide Dismutase and Amine Small Molecules[D]. Ji'nan: Shandong Normal University, 2007(in Chinese). 

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    13. [13]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(3)
  • Abstract views(1200)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return