Citation: LI Xinyi, WANG Xiaohua, ZHOU Xiaodong, HU Jiming. Research Progress on Biosensing Based on Peptides and Gold Nanoparticles Composite Materials[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 489-499. doi: 10.11944/j.issn.1000-0518.2019.05.180253 shu

Research Progress on Biosensing Based on Peptides and Gold Nanoparticles Composite Materials

  • Corresponding author: ZHOU Xiaodong, zhouxd@whu.edu.cn HU Jiming, jmhu@whu.edu.cn
  • Received Date: 28 July 2018
    Revised Date: 24 August 2018
    Accepted Date: 12 October 2018

    Fund Project: the National Natural Science Foundation of China 21775114the National Natural Science Foundation of China 81471696Supported by the National Natural Science Foundation of China(No.21775114, No.81471696)

Figures(6)

  • As the intermediate product of protein hydrolysis, peptides are synthesized through the polymerization of α-amino acids. Given the great biocompatibility and surface plasmon resonance(SPR) of gold nanoparticles(AuNPs), biosensors based on the peptide-AuNPs system have attracted the attention of many scientists. In this review, the biosensing research and application of the peptide-AuNPs complexes are summarized, including the preparation and properties of peptides and AuNPs, the synthesis of peptide-AuNPs and the application in biosensing.
  • 加载中
    1. [1]

      Kim Y, Johnson R C, Hupp J T. Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal Ions[J]. Nano Lett, 2001,1(4):165-167. doi: 10.1021/nl0100116

    2. [2]

      Liu J, Lu Y. A Colorimetric Lead Biosensor Using DNA Zyme-Directed Assembly of Gold Nanoparticles[J]. J Am Chem Soc, 2003,125(22):6642-6643. doi: 10.1021/ja034775u

    3. [3]

      Rex M, Hernandez F E, Campiglia A D. Pushing the Limits of Mercury Sensors with Gold Nanorods[J]. Anal Chem, 2006,78(2):445-451. doi: 10.1021/ac051166r

    4. [4]

      Lin S Y, Wu S H, Chen C H. A Simple Strategy for Prompt Visual Sensing by Gold Nanoparticles:General Applications of Interparticle Hydrogen Bonds[J]. Angew Chem Int Ed, 2006,45(30):4948-4951. doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Zhao W, Chiuman W, Brook M A. Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer and Noncrosslinking Gold Nanoparticle Aggregation[J]. ChemBioChem, 2007,8(7):727-731. doi: 10.1002/(ISSN)1439-7633

    6. [6]

      Lytton-Jean A K R, Han M S, Mirkin C A. Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles[J]. Anal Chem, 2007,79(15):6037-6041. doi: 10.1021/ac070635h

    7. [7]

      LI Jingyun, WANG Yi, XU Jiali. Detection of Cefazolin Based on the Plasmonic Resonance Absorption of Gold Nanoparticle[J]. Chinese J Appl Chem, 2012,29(4):455-461.  

    8. [8]

      Lee J S, Han M S, Mirkin C A. Colorimetrie Detection of Mercuric Ion(Hg2+) in Aqueous Media Using DNA Functionalized Gold Nanoparticles[J]. Angew Chem Int Ed, 2007,46(22):4093-4096. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Medley C D, Smith J E, Tang Z. Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells[J]. Anal Chem, 2006,80(4):1067-1072.  

    10. [10]

      Liu Q, Wang J, Boyd B J. Peptide-Based Biosensors[J]. Talanta, 2015,136:114-127. doi: 10.1016/j.talanta.2014.12.020

    11. [11]

      Katsoyannis P G. Peptide Synthesis and Protein Structure[J]. J Polym Sci, 1961,49(151):51-74. doi: 10.1002/pol.1961.1204915104

    12. [12]

      HUANG Zhongxian. New Trends in Metalloprotein Studies[J]. Prog Chem, 2002,14(4):318-322. doi: 10.3321/j.issn:1005-281X.2002.04.014

    13. [13]

      LI Yuexi, HUANG Peitang. Application of Peptides in Biological Medicine and Diagnosis Reagents[J]. Chinese J Biochem Pharmaceut, 2001,22(4):208-210.  

    14. [14]

      Fujisawa N, Sakao Y, Hayashi S. Alpha-Chemokine Growth Factors for Adenocarcinomas:A Synthetic Peptide Inhibitor for Alpha-Chemokines Inhibits the Growth of Adenocarcinoma Cell Lines[J]. J Cancer Res Clin Oncol, 2000,1(1):19-26.

    15. [15]

      Llinas-Brunet M, Bailey M, Fazal G. Peptide-Based Inhibitors of the Hepatitis C Virus Serine Protease[J]. Bioorg Med Chem Lett, 1998,8(13):1713-1718. doi: 10.1016/S0960-894X(98)00299-6

    16. [16]

      ZHOU Binbin. Design and Synthesis of Functional Peptides and Their Applications[D]. Hunan: Central South University, 2013(in Chinese).

    17. [17]

      Merrifield R B. Solid Phase Peptide Synthesis[J]. J Am Chem Soc, 1963,85(14):2149-2154. doi: 10.1021/ja00897a025

    18. [18]

      Mitchell A R. Bruce Merrifield and Solid-Phase Peptide Synthesis:A Historical Assessment[J]. Pept Sci, 2008,90(3):175-184. doi: 10.1002/bip.20925

    19. [19]

      Alayoglu S, Eichhorn B. Rh-Pt Bimetallic Catalysts:Synthesis, Characterization, and Catalysis of Core-Shell, Alloy, and Monometallic Nanoparticles[J]. J Am Chem Soc, 2008,130(51):17479-17486. doi: 10.1021/ja8061425

    20. [20]

      Yu H, Chen M, Rice P M. Dumbbell-Like Bifunctional Au-Fe3O4 Nanoparticles[J]. Nano Lett, 2005,5(2):379-382. doi: 10.1021/nl047955q

    21. [21]

      Dijk M A, Tchebotareva A L, Orrit M. Absorption and Scattering Microscopy of Single Metal Nanoparticles[J]. Phys Chem Chem Phys, 2006,8(30):3486-3495. doi: 10.1039/b606090k

    22. [22]

      Wang W, Asher S A. Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications[J]. J Am Chem Soc, 2001,123(50):12528-12535. doi: 10.1021/ja011262j

    23. [23]

      Li H, Huang H, Feng J. A Polypeptide-Mediated Synthesis of Green Fluorescent Gold Nanoclusters for Fe3+ Sensing and Bioimaging[J]. J Colloid Interface Sci, 2017,506:386-392. doi: 10.1016/j.jcis.2017.07.062

    24. [24]

      Song S, Qin Y, He Y. Functional Nanoprobes for Ultrasensitive Detection of Biomolecules[J]. Chem Soc Rev, 2010,39(11):4234-4243. doi: 10.1039/c000682n

    25. [25]

      Levy R, Thanh N T K, Doty R C. Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles[J]. J Am Chem Soc, 2004,126:10076-10084. doi: 10.1021/ja0487269

    26. [26]

      Yan X, Zhu P, Li J. Self-assembly and Application of Diphenylalanine-Based Nanostructures[J]. Chem Soc Rev, 2010,6(39):1877-1890.

    27. [27]

      Semino C E. Self-assembling Peptides:From Bio-Inspired Materials to Bone Regeneration[J]. J Dent Res, 2008,87(7):606-616. doi: 10.1177/154405910808700710

    28. [28]

      Zhang S, Holmes T, Lockshin C. Spontaneous Assembly of a Self-complementary Oligopeptide to Form a Stable Macroscopic Membrane[J]. Proc Natl Acad Sci, 1993,90(8):3334-3338. doi: 10.1073/pnas.90.8.3334

    29. [29]

      Zhang S G. Emerging Biological Materials Through Molecular Self-sssembly[J]. Biotechnol Adv, 2002,20(5/6):321-339.

    30. [30]

      Zhang S G, Yan L, Altman M. Biological Surface Engineering:A Simple System for Cell Pattern Formation[J]. Biomaterials, 1999,20(13):1213-1220. doi: 10.1016/S0142-9612(99)00014-9

    31. [31]

      Gupta M, Bagaria A, Mishra A. Self-assembly of a Dipeptide-Containing Conformationally Restricted Dehydrophenylalanine Residue to Form Ordered Nanotubes[J]. Adv Mater, 2007,19(6):858-861. doi: 10.1002/(ISSN)1521-4095

    32. [32]

      Zhang S, Rich A. Direct Conversion of an Oligopeptide from a Beta-Sheet to an Alpha-Helix:A Model for Amyloid Formation[J]. Proc Natl Acad Sci, 1997,94(1):23-28. doi: 10.1073/pnas.94.1.23

    33. [33]

      Holmes T C. Novel Peptide-Based Biomaterial Scaffolds for Tissue Engineering[J]. Trends Biotechnol, 2002,20(1):16-21. doi: 10.1016/S0167-7799(01)01840-6

    34. [34]

      Ghosh S K, Pal T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:From Theory to Applications[J]. Chem Rev, 2007,107(11):4797-4862. doi: 10.1021/cr0680282

    35. [35]

      Rosi N L, Mirkin C A. Nanostructures in Biodiagnostics[J]. Chem Rev, 2005,105(4):1547-1562. doi: 10.1021/cr030067f

    36. [36]

      Niemeyer C M. Nanoparticles, Proteins, and Nucleic Acids:Biotechnology Meets Materials Science[J]. Angew Chem Int Ed, 2001,40(22):4128-4158. doi: 10.1002/1521-3773(20011119)40:22<>1.0.CO;2-D

    37. [37]

      Xue W, Zhang G, Zhang D. A Sensitive Colorimetric Label-Free Assay for Trypsin and Inhibitor Screening with Gold Nanoparticles[J]. Analyst, 2011,136(15)3136. doi: 10.1039/c1an15224f

    38. [38]

      Adj Mian J, Anne A S, Cauet G. Cleavage-Sensing Redox Peptide Monolayers for the Rapid Measurement of the Proteolytic Activity of Trypsin and α-Thrombin Enzymes[J]. Langmuir, 2010,26(12):10347-10356. doi: 10.1021/la100397g

    39. [39]

      Fan H, Jiang X, Zhang T. Peptide-induced Fluorescence Quenching of Conjugated Polyelectrolyte for Label-Free, Ultrasensitive and Selective Assay of Protease Activity[J]. Biosens Bioelectron, 2012,34(1):221-226. doi: 10.1016/j.bios.2012.02.006

    40. [40]

      Talley C E, Jusinski L, Hollars C W. Intracellular pH sensors Based on Surface-Enhanced Raman Scattering[J]. Anal Chem, 2004,76(23):7064-7068. doi: 10.1021/ac049093j

    41. [41]

      SHU Guowei, CHEN He, LV Jiali. Research Advance of Metal Nanoparticles Prepared by Microorganisms[J]. Funct Mater, 2007,38:2052-2055. doi: 10.3321/j.issn:1001-9731.2007.12.037

    42. [42]

      Turkevich J, Stevenson P C, Hillier J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold[J]. Discuss Faraday Soc, 1951,1155. doi: 10.1039/df9511100055

    43. [43]

      Brust M, Walker M, Bethell D. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-Liquid System[J]. Chem Commun, 1994(7):801-802.

    44. [44]

      Farren-Dai M, Awoonor-Williams E, Macneil C S. A Novel Gold Nanoparticle Stabilization and Its Muon Chemistry[J]. Chem Phys Lett, 2014,610.  

    45. [45]

      Zhao P, Li N, Astruc D. State of the Art in Gold Nanoparticle Synthesis[J]. Coord Chem Rev, 2013,257(3/4):638-665.  

    46. [46]

      Daniel M C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology[J]. Chem Rev, 2004,104(1):293-346. doi: 10.1021/cr030698+

    47. [47]

      Gupta R K, Srinivasan M P, Dharmarajan R. Synthesis of 16-Mercaptohexadecanoic Acid Capped Gold Nanoparticles and Their Immobilization on a Substrate[J]. Mater Lett, 2012,67(1):315-319. doi: 10.1016/j.matlet.2011.09.047

    48. [48]

      Boisselier E, Diallo A K, Salmon L. Encapsulation and Stabilization of Gold Nanoparticles with "Click" Polyethyleneglycol Dendrimers[J]. J Am Chem Soc, 2010,132(8):2729-2742. doi: 10.1021/ja909133f

    49. [49]

      Pan Y, Guo M, Nie Z. Colorimetric Detection of Apoptosis Based on Caspase-3 Activity Assay Using Unmodified Gold Nanoparticles[J]. Chem Commun, 2012,48(7):997-999. doi: 10.1039/C1CC15407A

    50. [50]

      Bishop K J M, Wilmer C E, Soh S. Nanoscale Forces and Their Uses in Self-assembly[J]. Small, 2009,5(14):1600-1630. doi: 10.1002/smll.v5:14

    51. [51]

      Gill R, Goeken K, Subramaniam V. Fast, Single-Step, and Surfactant-Free Oligonucleotide Modification of Gold Nanoparticles Using DNA with a Positively Charged Tail[J]. Chem Commun, 2013,49(97):11400-11402. doi: 10.1039/c3cc47138a

    52. [52]

      Dong Z M, Jin X, Zhao G C. Amplified QCM Biosensor for Type Ⅳ Collagenase Based on Collagenase Cleavage of Gold Nanoparticles Functionalized Peptide[J]. Biosens Bioelectron, 2018,106:111-116. doi: 10.1016/j.bios.2018.01.069

    53. [53]

      Pan Y L, Guo M L, Nie Z. Colorimetric Detection of Apoptosis Based on Caspase-3 Activity Assay Using Unmodified Gold Nanoparticles[J]. Chem Commun, 2012,48(7):997-999. doi: 10.1039/C1CC15407A

    54. [54]

      Wu Z T, Liu Y Z, Zhou X D. A "Turn-Off" SERS-Based Detection Platform for Ultrasensitive Detection of Thrombin Based on Enzymatic Assays[J]. Biosens Bioelectron, 2013,44:10-15. doi: 10.1016/j.bios.2013.01.006

    55. [55]

      Wang X, Geng J, Miyoshi D. A Rapid and Sensitive "Add-Mix-Measure" Assay for Multiple Proteinases Based on One Gold Nanoparticle-Peptide-Fluorophore Conjugate[J]. Biosens Bioelectron, 2010,26:743-747. doi: 10.1016/j.bios.2010.06.046

    56. [56]

      Guarise C, Pasquato L, De Filippis V. Gold Nanoparticles-Based Protease Assay[J]. Proc Natl Acad Sci, 2006,103(11):3978-3982. doi: 10.1073/pnas.0509372103

    57. [57]

      Wu Z T, Liu Y F, Liu Y Z. A Simple and Universal "Turn-On" Detection Platform for Proteases Based on Surface Enhanced Raman Scattering(SERS)[J]. Biosens Bioelectron, 2015,65:375-381. doi: 10.1016/j.bios.2014.10.065

    58. [58]

      Qu G, Zhang G, Wu Z. A "Turn-Off" SERS Assay of Heparin with High Selectivity Based on Heparin-Peptide Complex and Raman Labelled Gold Nanoparticles[J]. Biosens Bioelectron, 2014,60:124-129. doi: 10.1016/j.bios.2014.04.004

    59. [59]

      Wu J, Lu Y, Wu Z. Two-Dimensional Molybdenum Disulfide(MoS2) with Gold Nanoparticles for Biosensing of Explosives by Optical Spectroscopy[J]. Sens Actuators B, 2018,261:279-287. doi: 10.1016/j.snb.2018.01.166

    60. [60]

      Wang G, Su X, Xu Q. Antifouling Aptasensor for the Detection of Adenosine Triphosphate in Biological Media Based on Mixed Self-assembled Aptamer and Zwitterionic Peptide[J]. Biosens Bioelectron, 2018,101:129-134. doi: 10.1016/j.bios.2017.10.024

    61. [61]

      Slocik J M, Zabinski J S, Phillips D M. Colorimetric Response of Peptide-Functionalized Gold Nanoparticles to Metal Ions[J]. Small, 2008,4(5):548-551. doi: 10.1002/(ISSN)1613-6829

    62. [62]

      Chai F, Wang C, Wang T. Colorimetric Detection of Pb2+ Using Glutathione Functionalized Gold Nanoparticles[J]. ACS Appl Mater Interfaces, 2010,2(5):1466-1470. doi: 10.1021/am100107k

    63. [63]

      Parnsubsakul A, Oaew S, Surareungchai W. Zwitterionic Peptide-Capped Gold Nanoparticles for Colorimetric Detection of Ni2+[J]. Nanoscale, 2018,10(12):5466-5473. doi: 10.1039/C7NR07998B

    64. [64]

      Aili D, Enander K, Rydberg J. Folding Induced Assembly of Polypeptide Decorated Gold Nanoparticles[J]. J Am Chem Soc, 2008,130(17):5780-5788. doi: 10.1021/ja711330f

    65. [65]

      Li X, Wu Z, Zhou X. Colorimetric Response of Peptide Modified Gold Nanoparticles:An Original Assay for Ultrasensitive Silver Detection[J]. Biosens Bioelectron, 2017,92:496-501. doi: 10.1016/j.bios.2016.10.075

    66. [66]

      ZHU Zhijun, LIU Dianjun, WANG Zhenxin. A Simple Colorimetric Assay for Detection of Cadmium Ion Based on 6-Mercaptopurine/Peptide Functionalized Gold Nanoparticles[J]. Chinese J Appl Chem, 2013,30(6):716-721.  

    67. [67]

      Zhou G, Liu Y, Luo M. Peptide-Capped Gold Nanoparticle for Colorimetric Immunoassay of Conjugated Abscisic Acid[J]. ACS Appl Mater Interfaces, 2012,4(9):5010-5015. doi: 10.1021/am301380q

    68. [68]

      Cortez J, Vorobieva E, Gralheira D. Bionanoconjugates of Tyrosinase and Peptide-Derivatized Gold Nanoparticles for Biosensing of Phenolic Compounds[J]. J Nanopart Res, 2011,13:1101-1113. doi: 10.1007/s11051-010-0099-8

    69. [69]

      Hiroshi T, Tomoko S, Hiroyuki O. Gold Nanoparticles Conjugated with Glycopeptides for Lectin Detection and Imaging on Cell Surface[J]. Protein Pept Lett, 2018,25(1):84-89. doi: 10.2174/0929866525666171218124434

    70. [70]

      Zhang M, Liu Y Q, Ye B C. Colorimetric Assay for Parallel Detection of Cd2+, Ni2+ and Co2+ Using Peptide-Modified Gold Nanoparticles[J]. Analyst, 2012,137(3):601-607. doi: 10.1039/C1AN15909G

    71. [71]

      Liu X, Wang Y, Chen P. Peptide Functionalized Gold Nanoparticles with Optimized Particle Size and Concentration for Colorimetric Assay Development:Detection of Cardiac Troponin I[J]. ACS Sens, 2016,1:1416-1422. doi: 10.1021/acssensors.6b00493

    72. [72]

      Li X, Wang J, Sun L. Gold Nanoparticle-Based Colorimetric Assay for Selective Detection of Aluminium Cation on Living Cellular Surfaces[J]. Chem Commun, 2010,46(6):988-990. doi: 10.1039/B920135A

    73. [73]

      Huang H, Zhang Q, Luo J. Sensitive Colorimetric Detection of Lysozyme in Human Serum Using Peptide-Capped Gold Nanoparticles[J]. Anal Methods, 2012,4(11):3874-3878. doi: 10.1039/c2ay25855b

    74. [74]

      Li X Y, Feng F Y, Wu Z T. High Stability of Gold Nanoparticles Towards DNA Modification and Efficient Hybridization via a Surfactant-Free Peptide Route[J]. Chem Commun, 2017,53(87)11909. doi: 10.1039/C7CC06827A

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    13. [13]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(4)
  • Abstract views(345)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return