Citation: DONG Zhaoxia, SONG Tongyang, LU Jiqing, XIE Guanqun, LUO Mengfei. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Cr2O3 Catalysts[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 515-523. doi: 10.11944/j.issn.1000-0518.2019.05.180245 shu

Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Cr2O3 Catalysts

  • Corresponding author: XIE Guanqun, gqxie@zjnu.cn LUO Mengfei, mengfeiluo@zjnu.cn
  • Received Date: 17 July 2018
    Revised Date: 12 October 2018
    Accepted Date: 27 November 2018

    Fund Project: the Natural Science Foundation of Zhejiang Province, China LY16B070001Supported by the Natural Science Foundation of Zhejiang Province, China(No.LY16B070001)

Figures(6)

  • A series of Cr2O3 catalysts was prepared by a precipitation method and tested for the gas phase dehydrochlorination of 1, 1, 2-trichloroethane(TCE) to synthesize cis-1, 2-dichloroethylene(cis-DCE). X-ray diffraction(XRD), hydrogen temperature-programmed reduction(H2-TPR), ammonia temperature-programmed desorption(NH3-TPD) and X-ray photoelectron spectroscopy(XPS) were used to study the dehydrochlorination of TCE on Cr2O3 catalyst and its reaction mechanism. It is found that the conversion ratio of TCE on the catalysts decreases with the increase of the calcination temperature, while the selectivity to cis-DCE first increases and then decreases. The best performance is obtained on the catalyst calcined at 400℃, with a TCE conversion ratio of 70.8% and a cis-DCE selectivity of 90.0%. In addition, the areal specific reaction rate also first increases and then decreases with the increase of the calcination temperature, with the highest value being obtained on the catalysts calcined at 400℃(0.801×10-2 μmol/(s·m2). The catalytic behaviors of the catalysts are well related to their surface Cr2O3 species. Turnover frequencies(TOFs) calculated based on the surface acidity and the highest value being obtained on the catalysts calcined at 400℃(2.82×10-5 s-1) show that the oxidation states of the surface Cr species are important for the reaction and the Cr species with an average valence of 3.2 are appropriate for the reaction.
  • 加载中
    1. [1]

      JIN Lirui, ZHANG Xiaojun, LI Hui. Diversity of 1, 1, 1-Trichloroethane Degrading Dehalobacter spp. in Contaminated Groundwater[J]. Microbiol China, 2013,40(8):1522-1530.  

    2. [2]

      Mukhopadhyay S, Tung H S, Nair H. Method for Producing Fluorinated Organic Compounds.WO2007056149Al[P]. 2007-05-18

    3. [3]

      Wang H, Tung H S. Dehydrochlorination of Hydrochlorofluorocarbons Using Pre-treated Activated Carbon Catalysts: WO, 2009021154A2[P]. 2009-02-12

    4. [4]

      Li X G, Li T, Zhang T. Nano-TiO2-Catalyzed Dehydrochlorination of 1, 1, 2, 2-Tetrachloroethane:Roles of Crystalline Phase and Exposed Facets[J]. Environ Sci Technol, 2018,52(7):4031-4039. doi: 10.1021/acs.est.7b05479

    5. [5]

      Dofling J, Janssen D B. Estimates of Gibbs Free Energies of Formation of Chlorinated Aliphatic Compounds[J]. Biodegradation, 1994,5(1):21-28.  

    6. [6]

      Kokubo K, Kitasaka K, Oshima T. Effects of the Cation Binding Mode on E-Z Isomerization of 1, 2-Dichloroethylene[J]. Org Lett, 2006,8(8):1597-1600.

    7. [7]

      Turton D A, Martin D F, Wynne K. Optical Kerr-Effect Study of Trans- and Cis-1, 2-Dichloroethene:Liquid Liquid Transition or Super-Arrhenius Relaxation[J]. Phys Chem Chem Phys, 2010,12(16):4191-4200. doi: 10.1039/b918196b

    8. [8]

      Van der Heijden A W A M, Mens A J M, Bogerd R. Dehydrochlorination of Intermediates in the Production of Vinyl Chloride over Lanthanum Oxide-based Catalysts[J]. Catal Lett, 2008,122(3/4):238-246.  

    9. [9]

      Tang C, Jin Y, Lu J. Highly Efficient Mg(OH)Cl/SiO2 Catalysts for Selective Dehydrochlorination of 1, 1, 2-Trichloroethane[J]. Appl Catal A, 2015,508:10-15.  

    10. [10]

      JIN Yanxia, TANG Cen, MENG Xiuqing. Highly Stable CsNO3/SiO2 Catalysts for the Synthesis of Vinylidene Chloride Using a Gaseous Phase Method[J]. Acta Phys-Chim Sin, 2016,32(2):510-518.  

    11. [11]

      HU Yihao, SONG Tongyang, WANG Yuejuan. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts:Acidity and Deactivation[J]. Acta Phys-Chim Sin, 2017,33(5):1017-1026.  

    12. [12]

      Song T Y, Dong Z X, Song J D. Dehydrochlorination of 1, 1, 2-Trichloroethane over SiO2-Supported Alkali and Transition Metal Catalysts:Tunable Selectivity Controlled by the Acid-base Properties of the Catalysts[J]. Appl Catal B, 2018,236:368-376. doi: 10.1016/j.apcatb.2018.04.018

    13. [13]

      WANG Yun, LIANG Yan, HE Jun. Catalytic Behaviors of Cr2O3 and CrO3/Cr2O3 Catalysts for Gas Phase Fluorination of 2-Chloro-1, 1, 1-trifluoroethane:Active Spedes and Catalyst Deactivation[J]. Chinese J Inorg Chem, 2017,33(1):123-133.  

    14. [14]

      Han W, Li X, Tang H. Preparation of fluorinated Cr2O3 Hexagonal Prism and Catalytic Performance for the Dehydrofluorination of 1, 1-Difluoroethane to Vinyl Fluoride[J]. J Nanopart Res, 2015,17(9):1-12.

    15. [15]

      Lim S, Kim M S, Choi J W. Catalytic Dehydrofluorination of 1, 1, 1, 2, 3-Pentafluoropropane(HFC-245eb) to 2, 3, 3, 3-Tetrafluoropropene(HFO-1234yf) Using in-situ Fluorinated Chromium Oxyfluoride Catalyst[J]. Catal Today, 2017,293:42-48.

    16. [16]

      Luo J W, Song J D, Jia W Z. Catalytic Dehydrofluorination of 1, 1, 1, 3, 3-Pentafluoropropane to 1, 3, 3, 3-Tetrafluoropropene over Fluorinated NiO/Cr2O3 Catalysts[J]. Appl Surf Sci, 2018,433:904-913.  

    17. [17]

      Wang F, Fan J L, Zhao Y. Effects of Yttrium-doping on the Performance of Cr2O3, Catalysts for Vapor Phase Fluorination of 1, 1, 2, 3-Tetrachloropropene[J]. J Fluorine Chem, 2014,166:78-83. doi: 10.1016/j.jfluchem.2014.07.030

    18. [18]

      Cheng Y X, Fan J L, Xie Z Y. Effects of M-promoter(M = Y, Co, La, Zn) on Cr2O3 Catalysts for Fluorination of Perchloroethylene[J]. J Fluorine Chem, 2013,156:66-72. doi: 10.1016/j.jfluchem.2013.08.016

    19. [19]

      Zhang W X, Liang Y, Luo J W. Morphological Effects of Ordered Cr2O3, Nanorods and Cr2O3, Nanoparticles on Fluorination of 2-Chloro-1, 1, 1-trifluoroethane[J]. J Mater Sci, 2016,51(13):6488-6496.  

    20. [20]

      Grzybowska B, Sloczyn'ski J, Grabowski R. Chromium Oxide/Alumina Catalysts in Oxidative Dehydrogenation of Isobutane[J]. J Catal, 1998,178(2):687-700.  

    21. [21]

      Niedersen K U, Schreier E, Kemnitz E. Isomerization Reaction of 1, 1, 2, 2-Tetrafluoroethane on Chromia—A Study of the Active Sites on the Surface[J]. J Catal, 1997,167(1):210-214.  

    22. [22]

      Wang X, Xie Y C, Wang X. Total Oxidation of CH4 on Sn-Cr Composite Oxide Catalysts[J]. Appl Catal B, 2001,35(2):85-94.

    23. [23]

      FAN Jinglian. Vapor-Phase Fluorination of 1, 1, 2, 3-Tetrachloropropene to Synthesis Tetrafluoropropene[D]. Zhejiang Normal University, 2014(in Chinese).

    24. [24]

      Bobet J L, Desmoulins-Krawiec S, Grigorova E. Addition of Nanosized Cr2O3 to Magnesium for Improvement of the Hydrogen Sorption Properties[J]. J Alloys Compd, 2003,351(1):217-221.  

    25. [25]

      Lin Y, Cai W, Tian X. Polyacrylonitrile/Ferrous Chloride Composite Porous Nanofibers and Their Strong Cr-Removal Performance[J]. J Mater Chem, 2011,21(4):991-997. doi: 10.1039/C0JM02334E

    26. [26]

      Liu B, Terano M, Liu B. Investigation of the Physico-Chemical State and Aggregation Mechanism of Surface Cr Species on a Phillips CrOx/SiO2 Catalyst by XPS and EPMA[J]. J Mol Catal A, 2001,172(1/2):227-240.  

    27. [27]

      Gaspar A B, Perea C A C, Dieguez L C. Characterization of Cr/SiO2 Catalysts and Ethylene Polymerization by XPS[J]. Appl Surf Sci, 2005,252(4):939-949. doi: 10.1016/j.apsusc.2005.01.031

    28. [28]

      Gao S, Dong C, Luo H. Scanning Electrochemical Microscopy Study on the Electrochemical Behavior of CrN Film Formed on 304 Stainless Steel by Magnetron Sputtering[J]. Electrochim Acta, 2013,114:233-241. doi: 10.1016/j.electacta.2013.10.009

    29. [29]

      Fu X Z, Luo X X, Luo J L. Ethane Dehydrogenation over Nano-Cr2O3 Anode Catalyst in Proton Ceramic Fuel Cell Reactors to Co-produce Ethylene and Electricity[J]. J Power Sources, 2011,196(3):1036-1041. doi: 10.1016/j.jpowsour.2010.08.043

    30. [30]

      Berteau P, Delmon B, Berteau P. Modified Aluminas: Relationship Between Activity in 1-Butanol Dehydration and Acidity Measured by NH3 TPD[J]. Catal Today, 1989,5(2):121-137. doi: 10.1016/0920-5861(89)80020-3

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    4. [4]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    5. [5]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    8. [8]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    9. [9]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    18. [18]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    19. [19]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(8)
  • Abstract views(711)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return