Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4]quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries
- Corresponding author: HUANG Weiwei, huangweiwei@ysu.edu.cn
Citation:
YAN Bing, XIONG Wenxu, ZHENG Shibing, ZHANG Xueqian, HUANG Weiwei. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4]quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries[J]. Chinese Journal of Applied Chemistry,
;2019, 36(5): 554-563.
doi:
10.11944/j.issn.1000-0518.2019.05.180231
Sripad S, Viswanathan V. Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles:Challenges and Opportunities[J]. J Electrochem Soc, 2017,164(11):E3635-E3646. doi: 10.1149/2.0671711jes
Zhang K, Han X P, Hu Z. Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion[J]. Chem Soc Rev, 2015,44(3):699-728. doi: 10.1039/C4CS00218K
Larcher D, Tarascon J. Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat Chem, 2015,7(1):19-29.
Al Sadat W I, Archer L A. The O2-assisted Al/CO2 Electrochemical Cell:A System for CO2 Capture/Conversion and Electric Power Generation[J]. Sci Adv, 2016,2(7)e1600968. doi: 10.1126/sciadv.1600968
Amine K, Kanno R, Tzeng Y. Rechargeable Lithium Batteries and Beyond:Progress, Challenges, and Future Directions[J]. MRS Bull, 2014,39(5):395-401. doi: 10.1557/mrs.2014.62
Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451(7179):652-657. doi: 10.1038/451652a
Fergus J W. Recent Developments in Cathode Materials for Lithium Ion Batteries[J]. J Power Sources, 2010,195(4):939-954. doi: 10.1016/j.jpowsour.2009.08.089
Goodenough J B, Kim Y. Challenges for Rechargeable Li-Ion Batteries[J]. Chem Mater, 2010,229(3):587-603.
Zhang K, Hu Z, Tao Z L. Inorganic & Organic Materials for Rechargeable Li Batteries with Multi-electron Reaction[J]. China Mater, 2014,57(1):42-58.
Shi Y, Peng L L, Ding Y. Nanostructured Conductive Polymers for Advanced Energy Storage[J]. Chem Soc Rev, 2015,44(19):6684-6696. doi: 10.1039/C5CS00362H
HUANG Weiei, YAN Bing, SUN Huimin. Organic Cathode Materials for Sodiumion Batteries[J]. J Yanshan Univ, 2018,42(3):189-198. doi: 10.3969/j.issn.1007-791X.2018.03.001
Yokoji T, Matsubara H, Satoh M. Rechargeable Organic Lithium-Ion Batteries Using Electron-Deficient Benzoquinones as Positive-Electrode Materials with High Discharge Voltages[J]. J Mater Chem A, 2014,2(45):19347-19354. doi: 10.1039/C4TA02812K
Lv M X, Zhang F, Wu Y F. Heteroaromatic Organic Compound with Conjugated Multi-carbonyl as Cathode Material for Rechargeable Lithium Batteries[J]. Sci Rep, 2016,6(4):2045-2322.
Emanuelsson R, Sterby M, Strømme M. An All-Organic Proton Battery[J]. J Am Chem Soc, 2017,139(13):4828-4834. doi: 10.1021/jacs.7b00159
Luo Z Q, Liu L, Zhao Q. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries[J]. J Am Chem Soc, 2017,129(41):12561-12565.
Huang W W, Zhu Z Q, Wang L J. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4] quinone Cathode and Gel Polymer Electrolyte[J]. Angew Chem Int Ed, 2013,125(35):9162-9166.
Häupler B, Wild A, Schubert U S. Carbonyls:Powerful Organic Materials for Secondary Batteries[J]. Adv Energy Mater, 2015,5(11):32-41.
Zheng S B, Sun H M, Yan B. High-Capacity Organic Electrode Material Calix[4] quinone/CMK-3 Nanocomposite for Lithium Batteries[J]. Sci China Mater, 2018:1-6.
Zheng S B, Hu J Y, Huang W W. Inorganic-Organic Nanocomposites Calix[4] quinone (C4Q)/CMK-3 as Cathode Materials for High-Capacity Sodium Batteries[J]. Inorg Chem Front, 2017,4(11):1806-1812. doi: 10.1039/C7QI00453B
Zhu Z Q, Chen J. Review-Advanced Carbon-Supported Organic Electrode Materials for Lithium(Sodium)-Ion Batteries[J]. J Electrochem Soc, 2015,162(14):A2393-A2405. doi: 10.1149/2.0031514jes
Song Z P, Zhou H. Towards Sustainable and Versatile Energy Storage Devices:An Overview of Organic Electrode Materials[J]. Energ Environ Sci, 2013,6(8):2280-2301. doi: 10.1039/c3ee40709h
Yabuuchi N, Kubota K, Dahbi M. Research Development on Sodium-Ion Batteries[J]. Chem Rev, 2014,114(23):11636-11682. doi: 10.1021/cr500192f
Xiang X D, Zhang K, Chen J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries[J]. Adv Mater, 2015,27(36):5343-5348. doi: 10.1002/adma.201501527
Yao Y, Wu F. Naturally Derived Nanostructured Materials from Biomass for Rechargeable Lithium/Sodium Batteries[J]. Nano Energy, 2015,17(17):91-103.
Kim Y Z, Wu W, Chun S E. Biologically Derived Melanin Electrodes in Aqueous Sodium-Ion Energy Storage Devices[J]. Proc Natl Acad Sci USA, 2013,110(52):20912-20917. doi: 10.1073/pnas.1314345110
Zhao Q, Huang W W, Luo Z Q. Forecasting and Monitoring Active Sites of Sustainable Quinone Electrodes for High-capacity and Safe Aqueous Zinc Batteries[J]. Sci Adv, 2018,4(3)eaao1761. doi: 10.1126/sciadv.aao1761
Pan B, Zhou D, Huang J. 2, 5-Dimethoxy-1, 4-Benzoquinone(DMBQ) as Organic Cathode for Rechargeable Magnesium-Ion Batteries[J]. J Electrochem Soc, 2016,163(3):A580-A583. doi: 10.1149/2.0021605jes
Ebbesen T W, Lezec H J, Hiura H. Electrical Conductivity of Individual Carbon Nanotubes[J]. Nature, 1996,382(6586):54-56. doi: 10.1038/382054a0
Ishii Y, Tashiro K, Hosoe K. Electrochemical Lithium-Ion Storage Properties of Quinone Molecules Encapsulated in Single-Walled Carbon nanotubes[J]. Phys Chem Chem Phys, 2016,18(15):10411-10418. doi: 10.1039/C6CP01103A
Wu H P, Wang K, Meng Y N. An Organic Cathode Material Based on a Polyimide/CNT Nanocomposite for Lithium Ion Batteries[J]. J Mater Chem A, 2013,1(21):6366-6372. doi: 10.1039/c3ta10473g
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
A.C4Q; B.CMK; C.m(C4Q):m(CMK-3)=1:1; D.m(C4Q):m(CMK-3)=1:2; E.m(C4Q):m(CMK-3)=2:1; F.SWCNTs; G.m(C4Q/CMK-3(1:1)):m(SWCNTs)=8:0.5; H.m(C4Q):m(CMK-3):m(SWCNTs)=1:1:1; I.m(C4Q):m(CMK-3):m(SWCNTs)=1:2:1; J.Super-P; K.m(C4Q):m(CMK-3):m(Super-P)=1:1:1; L. Electrode(m(C4Q):m(CMK-3):m(SWCNTs)=1:1:1) cycled after 50 curves