Citation: ZHANG Jiayi, LUO Lijun, LIU Xiaohong, LI Libo, CHENG Liang, CAO Dawei, YOU Tianyan. Research Progress of Electrochemiluminescence Sensors in the Field of Agricultural Sensing[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 379-391. doi: 10.11944/j.issn.1000-0518.2019.04.180417 shu

Research Progress of Electrochemiluminescence Sensors in the Field of Agricultural Sensing

  • Corresponding author: LI Libo, lbli@ujs.edu.cn YOU Tianyan, youty@ujs.edu.cn
  • Received Date: 29 December 2018
    Revised Date: 13 February 2019
    Accepted Date: 21 February 2019

    Fund Project: National Natural Science Foundation of China 21675065Youth Fund 61801195Supported by the National Natural Science Foundation of China(No.21675065), Youth Fund(No.61801195), China Postdoctoral Science Foundation(No.2018M632238)China Postdoctoral Science Foundation 2018M632238

Figures(8)

  • Electrochemiluminescence sensors own the advantage of high sensitivity, low background signal and simple operation, therefore, they have wide application in agriculture, industry, environment, clinic, food and so on. In this review, the application and analytical performance of electrochemiluminescence sensors in the detection of pesticide residues and mycotoxins are disucssed. The present situation of electrochemiluminescence sensors in the field of agriculture sensing is reviewed, and the development trend of the sensors in the future is described.
  • 加载中
    1. [1]

      WANG Jierong, HE Puming. Research on Influence of China's Grain Consumption Structure on Grain Import Trade[J]. Prices Monthly, 2016,34(6):51-54.  

    2. [2]

      KONG Xiangcai, WANG Guixia. The Abatement Path of Agricultural Pollution in the Background of Supply Side Reform in Agriculture Sector[J]. Soc Sci Yunnan, 2017,37(6):53-57.  

    3. [3]

      ZHANG Ningxin. Analysis on the Current Situation and Influence of Agricultural Pollution[J]. Agric Technol Service, 2015,32(12):228-228. doi: 10.3969/j.issn.1004-8421.2015.12.189

    4. [4]

      Guo J J, Zhang Y, Luo Y L. Efficient Fluorescence Resonance Energy Transfer Between Oppositely Charged CdTe Quantum Dots and Gold Nanoparticles for Turn-On Fluorescence Detection of Glyphosate[J]. Talanta, 2014,125(7):385-392.  

    5. [5]

      Miao S S, Wu M S, Ma L Y. Electrochemiluminescence Biosensor for Determination of Organophosphorous Pesticides Based on Bimetallic Pt-Au/Multi-walled Carbon Nanotubes Modified Electrode[J]. Talanta, 2016,158(9):142-151.  

    6. [6]

      He T, Zhu J, Nie Y. Nanobody Technology for Mycotoxin Detection:Current Status and Prospects[J]. Toxins, 2018,10(5):1-19.  

    7. [7]

      Luo Y, Liu X J, Li J K. Updating Techniques on Controlling Mycotoxins-A Review[J]. Food Control, 2018,89(4):123-132.  

    8. [8]

      KANG Yunbin. A Exploration into the Problem of Agricultural Pollution in China[J]. Economy Soc, 2016,38(10):71-71.  

    9. [9]

      Mardones C, Palma J, Sepulveda C. Determination of Tribromophenol and Pentachlorophenol and Its Metabolite Pentachloroanisole in Asparagus Officinalis by Gas Chromatography/Mass Spectrometry[J]. J Sep Sci, 2003,26(9):923-926.  

    10. [10]

      Zhou T, Xiao X H, Li G K. Microwave Accelerated Selective Soxhlet Extraction for the Determination of Organophosphorus and Carbamate Pesticides in Ginseng with Gas Chromatography/Mass Spectrometry[J]. Anal Chem, 2012,84(13):5816-5822. doi: 10.1021/ac301274r

    11. [11]

      Chen C Y, Li W J, Peng K Y. Determination of Aflatoxin M1 in Milk and Milk Powder Using High-Flow Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry[J]. J Agric Food Chem, 2005,53(22):8474-8480. doi: 10.1021/jf052142o

    12. [12]

      Gazzotti T, Lugoboni B, Zironi E. Determination of Fumonisin B1 in Bovine Milk by LC-MS/MS[J]. Food Control, 2009,20(12):1171-1174. doi: 10.1016/j.foodcont.2009.02.009

    13. [13]

      Rubert J, Soler C, Mañes J. Application of an HPLC-MS/MS Method for Mycotoxin Analysis in Commercial Baby Foods[J]. Food Chem, 2012,133(1):176-183. doi: 10.1016/j.foodchem.2011.12.035

    14. [14]

      Liang J S, Yang S L, Luo S L. Ultrasensitive Electrochemiluminescent Detection of Pentachlorophenol Using a Multiple Amplification Strategy Based on a Hybrid Material Made from Quantum Dots, Graphene, and Carbon Nanotubes[J]. Microchim Acta, 2014,181(7):759-765.  

    15. [15]

      Li S H, Wu X J, Liu C H. Application of DNA Aptamers as Sensing Layers for Detection of Carbofuran by Electrogenerated Chemiluminescence Energy Transfer[J]. Anal Chim Acta, 2016,941(42):94-100.  

    16. [16]

      Xia B Y, Yuan Q M, Chu M F. Directly One-Step Electrochemical Synthesis of Graphitic Carbon Nitride/graphene Hybrid and Its Application in Ultrasensitive Electrochemiluminescence Sensing of Pentachlorophenol[J]. Sens Actuat B Chem, 2016,228(2):565-572.  

    17. [17]

      Babamiria B, Salimia A, Hallaj R. Switchable Electrochemiluminescence Aptasensor Coupled with Resonance Energy Transfer for Selective Attomolar Detection of Hg2+ via CdTe@CdS/Dendrimer Probe and Au Nanoparticle Quencher[J]. Biosens Bioelectron, 2018,102(4):328-335.  

    18. [18]

      Du D, Huang X, Cai J. Comparison of Pesticide Sensitivity by Electrochemical Test Based on Acetylcholinesterase Biosensor[J]. Biosens Bioelectron, 2007,23(2):285-289. doi: 10.1016/j.bios.2007.05.002

    19. [19]

      Chiu H Y, Lin Z Y, Tu H L. Analysis of Glyphosate and Aminomethylphosphonic Acid by Capillary Electrophoresis with Electrochemiluminescence Detection[J]. J Chromatogr A, 2008,1177(1):195-198. doi: 10.1016/j.chroma.2007.11.042

    20. [20]

      Hung Y L, Hsiung T M, Chen Y Y. A Label-free Colorimetric Detection of Lead Ions by Controlling the Ligand Shells of Gold Nanoparticles[J]. Talanta, 2010,82(2):516-522. doi: 10.1016/j.talanta.2010.05.004

    21. [21]

      Miao W J. Electrogenerated Chemiluminescence and Its Biorelated Applications[J]. Chem Rev, 2008,108(7):2506-2553. doi: 10.1021/cr068083a

    22. [22]

      Zhang W, Xiong H W, Chen M M. Surface-Enhanced Molecularly Imprinted Electrochemiluminescence Sensor Based on Ru@SiO2 for Ultrasensitive Detection of Fumonisin B1[J]. Biosens Bioelectron, 2017,96(10):55-61.  

    23. [23]

      Luo L J, Li L B, Xu X X. Determination of Pentachlorophenol by Anodic Electrochemiluminescence of Ru(bpy)32+ Based on Nitrogen-Doped Graphene Quantum Dots as Coreactant[J]. RSC Adv, 2017,7:50634-50642. doi: 10.1039/C7RA10247J

    24. [24]

      Zhou L M, Huang J S, Yang L. Enhanced Electrochemiluminescence Based on Ru(bpy)32+-Doped Silica Nanoparticles and Graphene Composite for Analysis of Melamine in Milk[J]. Anal Chim Acta, 2014,824:57-64. doi: 10.1016/j.aca.2014.03.035

    25. [25]

      Li L B, Yu B, Zhang X P. A Novel Electrochemiluminescence Sensor Based on Ru(bpy)32+/N-Doped Carbon Nanodots System for the Detection of Bisphenol A[J]. Anal Chim Acta, 2014,895:104-111.  

    26. [26]

      Li L B, Liu D, Mao H P. Multifunctional Solid-state Electrochemiluminescence Sensing Platform Based on Poly(ethylenimine) Capped N-doped Carbon Dots as Novel Co-reactant[J]. Biosens Bioelectron, 2017,899:489-495.  

    27. [27]

      Richter M M. Electrochemiluminescence(ECL)[J]. Chem Rev, 2004,104(6):3003-3036. doi: 10.1021/cr020373d

    28. [28]

      Bezman R, Faulkner L R. Mechanisms of Chemiluminescent Electron-Transfer Reactions.V.Absolute Measurements of Rubrene Luminescence in Benzonitrile and N, N-Dimethylformamide[J]. J Am Chem Soc, 1972,94(18):6324-6330. doi: 10.1021/ja00773a012

    29. [29]

      Rubinstein I, Bard A J. Electrogenerated Chemiluminescence.37.Aqeous ECL Systems Based on Ru(2, 2'-bipyridine)32+ and Oxalate or Organic Acid[J]. J Am Chem Soc, 1981,103(3):512-516. doi: 10.1021/ja00393a006

    30. [30]

      Fabrizio E F, Prieto I, Bard A J. Hydrocarbon Cation Radical Formation by Reduction of Peroxydisulfate[J]. J Am Chem Soc, 2000,122(20):4996-4997. doi: 10.1021/ja000307y

    31. [31]

      Collinson M M, Wightman R M. High-frequency Generation of Electrochemiluminescence at Microelectrodes[J]. Anal Chem, 1993,65(19):2576-2582. doi: 10.1021/ac00067a006

    32. [32]

      Montano L A, Ingle J D. Investigation of the Lucigenin Chemiluminescence Reaction[J]. Anal Chem, 1979,51(7):919-926. doi: 10.1021/ac50043a032

    33. [33]

      Haapakka K E, Kankare J J. The Mechanism of the Electrogenerated Chemiluminescence of Luminol in Aqueous Alkaline Solution[J]. Anal Chim Acta, 1982,138:263-275. doi: 10.1016/S0003-2670(01)85310-1

    34. [34]

      Bae Y, Myung N, Bard A J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles[J]. Nano Lett, 2004,4(6):1153-1161. doi: 10.1021/nl049516x

    35. [35]

      Fiaccabrino G C, Koudelka-Hep M, Hsueh Y T. Electrochemiluminescence of Tris(2, 2'-bipyridine)ruthenium in Water at Carbon Microelectrodes[J]. Anal Chem, 1998,70(19):4157-4161. doi: 10.1021/ac980285m

    36. [36]

      Zu Y B, Bard A J. Electrogenerated Chemiluminescence.66.The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2, 2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity[J]. Anal Chem, 2000,72(14):3223-3232. doi: 10.1021/ac000199y

    37. [37]

      Xiong C Y, Wang H J, Yuan Y L. A Novel Solid-State Ru(bpy)32+ Electrochemiluminescence Immunosensor Based on Poly(ethylenimine) and Polyamidoamine Dendrimers as Co-reactants[J]. Talanta, 2015,131(1):192-197.  

    38. [38]

      Huang X M, Deng X, Qi W J. Highly Sensitive Luminol Electrochemiluminescence Immunosensor Based on Platinum-Gold Alloy Hybrid Functionalized Zinc Oxide Nanocomposites for Catalytic Amplification[J]. Sens Actuat B Chem, 2018,273(11):466-472.  

    39. [39]

      Zhang Q G, Xu G F, Gong L S. An Enzyme-assisted Electrochemiluminescent Biosensor Developed on Order Mesoporous Carbons Substrate for Ultrasensitive Glyphosate Sensing[J]. Electrochim Acta, 2015,186(27):624-630.  

    40. [40]

      Liang H, Song D D, Gong J M. Signal-on Electrochemiluminescence of Biofunctional CdTe Quantum Dots for Biosensing of Organophosphate Pesticides[J]. Biosens Bioelectron, 2014,53(6):363-369.  

    41. [41]

      Wang B X, Zhong X, Chai Y Q. Ultrasensitive Electrochemiluminescence Biosensor for Organophosphate Pesticides Detection Based on Carboxylated Graphitic Carbon Nitride-Poly(ethylenimine) and Acetylcholinesterase[J]. Electrochim Acta, 2017,224(6):194-200.  

    42. [42]

      Chen H M, Zhang H, Yuan R. Novel Double-Potential Electrochemiluminescence Ratiometric Strategy in Enzyme-Based Inhibition Biosensing for Sensitive Detection of Organophosphorus Pesticides[J]. Anal Chem, 2017,89(5):2823-2829. doi: 10.1021/acs.analchem.6b03883

    43. [43]

      Upadhyay S, Rao G R, Sharma M K. Immobilization of Acetylcholineesterase-Choline Oxidase on a Gold-Platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents[J]. Biosens Bioelectron, 2009,25(4):832-838. doi: 10.1016/j.bios.2009.08.036

    44. [44]

      Yang Y, Asiri A M, Du D. Acetylcholinesterase Biosensor Based on a Gold Nanoparticle-Polypyrrole-Reduced Graphene Oxide Nanocomposite Modified Electrode for the Amperometric Detection of Organophosphorus Pesticides[J]. Analyst, 2014,139(12):3055-3060. doi: 10.1039/c4an00068d

    45. [45]

      Rotariu L, Zamfir L G, Bala C. A Rational Design of the Multiwalled Carbon Nanotube-7, 7, 8, 8-Tetracyanoquinodimethan Sensor for Sensitive Detection of Acetylcholinesterase Inhibitors[J]. Anal Chim Acta, 2012,748(42):81-88.  

    46. [46]

      Wang B X, Wang H J, Zhong X. A Highly Sensitive Electrochemiluminescence Biosensor for the Detection of Organophosphate Pesticides Based on Cyclodextrin Functionalized Graphitic Carbon Nitride and Enzyme Inhibition[J]. Chem Commun, 2016,52(28):5049-5052. doi: 10.1039/C5CC10491B

    47. [47]

      WU Zhongping, GAO Wei, YANG Hong. Feature and Application of Zirconium and Zirconium Clad Plate for Pressure Vessel[J]. Jiangsu Chem Ind, 2004,32(5):24-27.  

    48. [48]

      Lin Z Y, Chen G N. Determination of Carbamates in Nature Water Based on the Enhancement of Electrochemiluminescent of Ru(bpy)32+ at the Multi-wall Carbon Nanotube-Modified Electrode[J]. Talanta, 2006,70(1):111-115. doi: 10.1016/j.talanta.2005.12.026

    49. [49]

      Li S H, Liu C H, Han B J. An Electrochemiluminescence Aptasensor Switch for Aldicarb Recognition via Ruthenium Complex-Modified Dendrimers on Multiwalled Carbon Nanotubes[J]. Microchim Acta, 2017,184(6):1669-1675. doi: 10.1007/s00604-017-2177-4

    50. [50]

      Yang S L, Liang J S, Luo S L. Supersensitive Detection of Chlorinated Phenols by Multiple Amplification Electrochemiluminescence Sensing Based on Carbon Quantum Dots/Graphene[J]. Anal Chem, 2013,85(16):7720-7725. doi: 10.1021/ac400874h

    51. [51]

      Jiang D, Du X J, Liu Q. One-Step Thermal-Treatment Route to Fabricate Well-Dispersed ZnO Nanocrystals on Nitrogen-Doped Graphene for Enhanced Electrochemiluminescence and Ultrasensitive Detection of Pentachlorophenol[J]. ACS Appl Mater Interfaces, 2015,7(5):3093-3100. doi: 10.1021/am507163z

    52. [52]

      Luo S L, Xiao H, Yang S L. Ultrasensitive Detection of Pentachlorophenol Based on Enhanced Electrochemiluminescence of Au Nanoclusters/Graphene Hybrids[J]. Sens Actuat B Chem, 2014,194(4):325-331.  

    53. [53]

      Wu W Q, Xiao H, Luo S L. A Highly Stable and Effective Electrochemiluminescence Platform of Copper Oxide Nanowires Coupled with Graphene for Ultrasensitive Detection of Pentachlorophenol[J]. Sens Actuat B Chem, 2016,222(1):747-754.  

    54. [54]

      Wang H F, He Y, Ji T R. Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water[J]. Anal Chem, 2009,81(4):1615-1621. doi: 10.1021/ac802375a

    55. [55]

      Tang C L, Meng G W, Huang Q. A Silica Xerogel Thin Film Based Fluorescent Sensor for Pentachlorophenol Rapid Trace Detection[J]. Sens Actuat B Chem, 2012,171(172):332-337.  

    56. [56]

      Wu Y H. Nano-TiO2 Dihexadecylphosphate Based Electrochemical Sensor for Sensitive Determination of Pentachlorophenol[J]. Sens Actuat B Chem, 2009,137(1):180-187. doi: 10.1016/j.snb.2008.11.005

    57. [57]

      SUN Li, HUO Jianglian, CUI Weigang. Current Methods for the Determination of Mycotoxins in Grain Products[J]. Chinese J Anal Chem, 2013,34(19):817-822.  

    58. [58]

      Xu G F, Zhang S P, Zhang Q R. Magnetic Functionalized Electrospun Nanofibers for Magnetically Controlled Ultrasensitive Label-Free Electrochemiluminescent Immune Detection of Aflatoxin B1[J]. Sens Actuat B Chem, 2016,222(6):707-713.  

    59. [59]

      Lv X H, Li Y Y, Cao Wei. A Label-free Electrochemiluminescence Immunosensor Based on Silver Nanoparticle Hybridized Mesoporous Carbon for the Detection of Aflatoxin B1[J]. Sens Actuat B Chem, 2014,202(4):53-59.  

    60. [60]

      Wu L, Ding F, Yin W M. From Electrochemistry to Electroluminescence:Development and Application in a Ratiometric Aptasensor for Aflatoxin B1[J]. Anal Chem, 2017,89(14):7578-7585. doi: 10.1021/acs.analchem.7b01399

    61. [61]

      Lv X H, Li Y Y, Yan T. Electrochemiluminescence Modified Electrodes Based on RuSi@Ru(bpy)32+ Loaded with Gold Functioned Nanoporous CO/Co3O4 for Detection of Mycotoxin Deoxynivalenol[J]. Biosens Bioelectron, 2015,70(8):28-33.  

    62. [62]

      Zheng H L, Yi H, Dai H. Fluoro-Coumarin Silicon Phthalocyanine Sensitized Integrated Electrochemiluminescence Bioprobe Constructed on TiO2 MOFs for the Sensing of Deoxynivalenol[J]. Sens Actuat B Chem, 2018,269(9):27-35.

    63. [63]

      Yang L L, Zhang Y, Li R B. Electrochemiluminescence Biosensor for Ultrasensitive Determination of Ochratoxin A in Corn Samples Based on Aptamer and Hyperbranched Rolling Circle Amplification[J]. Biosens Bioelectron, 2015,70(8):268-274.  

    64. [64]

      Wang Q L, Chen M M, Zhang H Q. Solid-state Electrochemiluminescence Sensor Based on RuSi Nanoparticles Combined with Molecularly Imprinted Polymer for the Determination of Ochratoxin A[J]. Sens Actuat B Chem, 2016,222(1):264-269.  

    65. [65]

      Chen M M, Wang Y, Cheng S B. Construction of Highly Efficient Resonance Energy Transfer Platform Inside a Nanosphere for Ultrasensitive Electrochemiluminescence Detection[J]. Anal Chem, 2018,90(8):5075-5081. doi: 10.1021/acs.analchem.7b05074

    66. [66]

      Gan N, Zhou J, Xiong P. An Ultrasensitive Electrochemiluminescent Immunoassay for Aflatoxin M1 in Milk, Based on Extraction by Magnetic Graphene and Detection by Antibody-Labeled CdTe Quantumn Dots-Carbon Nanotubes Nanocomposite[J]. Toxins, 2013,5(5):865-883. doi: 10.3390/toxins5050865

    67. [67]

      Wang Y G, Zhao G H, Li X J. Lectrochemiluminescent Competitive Immunosensor Based on Polyethyleneimine Capped SiO2 Nanomaterials as Labels to Release Ru(bpy)32+ Fixed in 3D Cu/Ni Oxalate for the Detection of Aflatoxin B1[J]. Biosens Bioelectron, 2018,101(3):290-296.

    68. [68]

      Tan Y, Chu X, Shen G L. A Signal-Amplified Electrochemical Immunosensorfor Aflatoxin B1 Determination in Rice[J]. Anal Biochem, 2009,387(1):82-86.

    69. [69]

      Masoomi L, Sadeghi O, Banitaba M H. A Non-enzymatic Nanomagnetic Electro-immunosensor for Determination of Aflatoxin B1 as a Model Antigen[J]. Sens Actuat B Chem, 2013,177(2):1122-1127.  

    70. [70]

      Daly S J, Keating G J, Dillon P P. Development of Surface Plasmon Resonance-based Immunoassay for Aflatoxin B1[J]. J Agric Food Chem, 2000,48(11):5097-5104. doi: 10.1021/jf9911693

    71. [71]

      Dinckaya E, Kinik Ö, Sezgintürk M K. Immobilization of Anti-aflatoxin B1 Antibody by UV Polymerization of Aniline and Aflatoxin B1 Detection via Electrochemical Impedance Spectroscopy[J]. Artif Cells Blood Substit Immobil Biotechnol, 2012,40(6):385-390. doi: 10.3109/10731199.2012.696059

    72. [72]

      Shim W B, Mun H, Joung H A. Chemiluminescence Competitive Aptamer Assay for the Detection of Aflatoxin B1 in Corn Samples[J]. Food Control, 2014,36(1):30-35. doi: 10.1016/j.foodcont.2013.07.042

    73. [73]

      Xu X, Liu X J, Li Y B. A Simple and Rapid Optical Biosensor for Detection of Aflatoxin B1 Based on Competitive Dispersion of Gold Nanorods[J]. Biosens Bioelectron, 2013,47(9):361-367.  

    74. [74]

      Zeng W J, Liao N, Lei Y M. Hemin as Electrochemically Regenerable Co-Reaction Accelerator for Construction of an Ultrasensitive PTCA-Based Electrochemiluminescent Aptasensor[J]. Biosens Bioelectron, 2018,100(2):490-496.  

    75. [75]

      Wang Z P, Duan N, Hun X. Electrochemiluminescent Aptamer Biosensor for the Determination of Ochratoxin A at a Gold-Nanoparticles-Modified Gold Electrode Using N-(Aminobutyl)-N-ethylisoluminol as a Luminescent Label[J]. Anal Bioanal Chem, 2010,398(5):2125-2132. doi: 10.1007/s00216-010-4146-1

    76. [76]

      Yuan Y L, Wei S Q, Liu G P. Ultrasensitive Electrochemiluminescent Aptasensor for Ochratoxin A Detection with the Loop-Mediated Isothermal Amplification[J]. Anal Chim Acta, 2014,811(6):70-75.  

    77. [77]

      Yang M L, Jiang B Y, Xie J Q. Electrochemiluminescence Recovery-Based Aptasensor for Sensitive Ochratoxin A Detection via Exonuclease-Catalyzed Target Recycling Amplification[J]. Talanta, 2014,125(11):45-50.  

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    12. [12]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(6)
  • Abstract views(1535)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return