Citation: MAO Xiaoming, TANG Xin, LI Min, LI Hui, LIANG Yaqin, LI Yan. Preparation and Photocatalytic Activity of BiOCl/Montmorillonite Composite Photocatalyst[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 474-481. doi: 10.11944/j.issn.1000-0518.2019.04.180236 shu

Preparation and Photocatalytic Activity of BiOCl/Montmorillonite Composite Photocatalyst

  • Corresponding author: MAO Xiaoming, maoxiaoming6609144@163.com
  • Received Date: 6 July 2018
    Revised Date: 10 September 2018
    Accepted Date: 12 October 2018

    Fund Project: Supported by Natural Science Foundation of Shanxi(No.201601D202022), Changzhi University Research Innovation Team Project(No.200469)Changzhi University Research Innovation Team Project 200469Natural Science Foundation of Shanxi 201601D202022

Figures(9)

  • In order to optimize the structure of BiOCl photocatalyst, improve its adsorption performance to organic pollutants, and enhance photocatalytic activity, BiOCl/montmorillonite(MMT) composite photocatalyst was prepared by ultrasonic assisted chemical precipitation method. The influence of composite mass fraction of montmorillonite(w(MMT)) on its photoactivity was investigated. The characterization results of XRD, SEM, FTIR and DRS show that the obtained composite catalyst has a microsphere structure with a band gap of 3.24 eV. With the increase of w(MMT), the microsphere structure of the composite catalyst is gradually destroyed, but the band gap energy does not change significantly. The adsorption and photocatalytic activity of the composite catalyst were investigated with 8-hydroxyquinoline as the target. The results show that with increase of w(MMT), the adsorption and photocatalytic oxidation activity of 8-hydroxyquinoline is gradually increased, which can be attributed to the increased specific surface area and reduced photo-generated carriers' recombination efficiency due to the composite of montmorillonite. When w(MMT) is 15%, the adsorption and photocatalytic performance of the catalyst are optimal. After 50 min of illumination, the degradation rate of 8-hydroxyquinoline reaches 85.6%, and the mineralization rate reaches 51.0%. Photogenerated holes and superoxide radical anions are the main oxidation active species. The composite catalyst also efficiently degrades catechol and p-aminobenzoic acid. At the same time, the composite photocatalyst exhibits strong chemical stability, indicating that it has strong practical application value and can be used for treating industrial wastewater containing organic phenolic pollutants.
  • 加载中
    1. [1]

      WANG Xiaowen, ZHANG Xiaochao, FAN Caimei. Research and Development of BiOCl-based Photocatalytic Materials[J]. Chem Ind Eng Prog, 2014,33(1):124-132.  

    2. [2]

      LIU Yazi, DING Shanshan, XU Jian. Preparation of a p-n Heterojunction BiFeO3@TiO2 Photocatalyst with a Core-Shell Structure for Visible-Light Photocatalytic Degradation[J]. Chinese J Catal, 2017,38(6):1052-1062.  

    3. [3]

      WANG Song, LI Yang, LI Fei. Microwave Hydrothermal Synthesis and Photocatalytic Properties of ZnO Nano-/Microparticles[J]. Chinese J Appl Chem, 2017,34(2):220-224.  

    4. [4]

      SONG Qiang, LI Li, LUO Hongxiang. Hierarchical Nanoflower-Ring Structure Bi2O3/(BiO)2CO3 Composite for Photocatalytic Degradation of Rhodamine B[J]. Chinese J Inorg Chem, 2017,33(7):1161-1171.  

    5. [5]

      LI Guishui, HU Xumin, CHENG Lijun. Preparation and Photocatalytic Properties of Bismuth Subcarbonate Modified with Surfactants[J]. Chinese J Appl Chem, 2018,35(6):692-699.  

    6. [6]

      Chang X F, Wang S B, Qi Q. Constrained Growth of Ultrasmall BiOCl Nanodiscs with a Low Percentage of Exposed {001} Facets and Their Enhanced Photoreactivity under Visible Light Irradiation[J]. Appl Catal B, 2015,176/177:201-211. doi: 10.1016/j.apcatb.2015.03.047

    7. [7]

      Sohrabnezhad S, Seifi A. The Green Synthesis of Ag/ZnO in Montmorillonite with Enhanced Photocatalytic Activity[J]. Appl Sur Sci, 2016,386:33-40. doi: 10.1016/j.apsusc.2016.05.102

    8. [8]

      Hannatu A S, Mansor B A, Mohd Z H. Nanocomposite of ZnO with Montmorillonite for Removal of Lead and Copper Ions from Aqueous Solutions[J]. Process Saf Environ, 2017,109:97-105. doi: 10.1016/j.psep.2017.03.024

    9. [9]

      Xu C Q, Gu F L, Wu H H. BiOCl-Montmorillonite as a Photocatalyst for Highly Efficient Removal of Rhodamine B and Orange G:Improtance of the Acidity and Dissolved Oxygen[J]. Appl Clay Sci, 2017,147:28-35. doi: 10.1016/j.clay.2017.07.025

    10. [10]

      Mao X M, Li X L, Wang Y W. KI/H2O2 Assisted Synthesis and the Changed Properties of BiOCl Photocatalysts[J]. Chem Eng J, 2014,247:241-249. doi: 10.1016/j.cej.2014.02.020

    11. [11]

      Liu Z S, Wu B T, Xiang D H. Effect of Solvents on Morphology and Photocatalytic Activity of BiOBr Synthesized by Solvothermal Method[J]. Mater Res Bull, 2012,47:3753-3757. doi: 10.1016/j.materresbull.2012.06.026

    12. [12]

      Duan F, Wan X F, Tan T T. Highly Exposed Surface Area of {001} Facets Dominated BiOBr Nanosheets with Enhanced Visible Light Photocatalytic Activity[J]. Phys Chem Chem Phys, 2016,18:6113-6121. doi: 10.1039/C5CP06711A

    13. [13]

      Xu J, Meng W, Zhang Y. Photocatalytic Degradation of Tetrabromobisphenol A by Mesoporous BiOBr:Efficacy, Products and Pathway[J]. Appl Catal B, 2011,107:355-362. doi: 10.1016/j.apcatb.2011.07.036

    14. [14]

      Cao G, Liu Z S, Feng P Z. Concave Ultrathin BiOBr Nanosheets with the Exposed {001} Facets:Room Temperature Synthesis and the Photocatalytic Activity[J]. Mater Chem Phys, 2017,199:131-137. doi: 10.1016/j.matchemphys.2017.06.056

    15. [15]

      Zhang N, Liu S Q, Fu X Z. Synthesis of M@TiO2(M=Au, Pd, Pt) Core-Shell Nanocomposites with Tunable Photoreactivity[J]. J Phys Chem C, 2011,115:9136-9145. doi: 10.1021/jp2009989

    16. [16]

      Hazime R, Ferronato C, Fine L. Photocatalytic Degradation of Imazalil in an Aqueous Suspension of TiO2 and Influence of Alcohols on the Degradation[J]. Appl Catal B, 2012,126:90-99. doi: 10.1016/j.apcatb.2012.07.007

    17. [17]

      Huo Y N, Zhang J, Miao M. Solvothermal Synthesis of Flower-Like BiOBr Microspheres with Highly Visible-Light Photocatalyti Performances[J]. Appl Catal B, 2012,111/112:334-341. doi: 10.1016/j.apcatb.2011.10.016

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(8)
  • Abstract views(1224)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return