Citation: CHENG Jinhua, JIANG Hongji. Study on Self-assembly Behaviors of an Amphiphilic Block Polymer by Terminally Grafting Tetraphenylethene-Based Aggregation-Induced Emission Active Moietys[J]. Chinese Journal of Applied Chemistry, ;2019, 36(4): 440-450. doi: 10.11944/j.issn.1000-0518.2019.04.180207 shu

Study on Self-assembly Behaviors of an Amphiphilic Block Polymer by Terminally Grafting Tetraphenylethene-Based Aggregation-Induced Emission Active Moietys

  • Corresponding author: JIANG Hongji, iamhjjiang@njupt.edu.cn
  • Received Date: 5 June 2018
    Revised Date: 8 August 2018
    Accepted Date: 21 September 2018

    Fund Project: the National Natural Science Foundation of China 21574068the National Major Basic Research Program of China 2012CB933301Supported by the National Major Basic Research Program of China(No.2012CB933301), the National Natural Science Foundation of China(No.21574068), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.YX03001)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions YX03001

Figures(8)

  • Poly(N-isopropylacrylamide)(PNIPAM) is an amphiphilic thermosensitive polymer with the hydrophilic amide group and the hydrophobic isopropyl group in the side chain. A reversible phase change occurs due to intermolecular interaction with the change of outside temperature. Tetraphenylethene derivatives have advantages of easy-to-synthesize, highly efficient chemical modification feasibility, aggregation-induced emission(AIE) characteristic and high quantum yield. Therefore, a macromolecular initiator F was prepared by the polymerization of N-isopropylacrylamide through single electron transfer-living free radical polymerization with tetraphenylethene derivative as the initiator. Then styrene was used as comonomer to convert the active PNIPAM initiator to an amphiphilic block polymer G, which was characterized by gel permeation chromatography and Fourier transform infrared spectra. Using tetraphenylethene-based AIE-active initiator as the research object of reference, the photophysical properties of amphiphilic block polymer at different temperatures and concentrations were studied to correlate the AIE activity with the amphiphilic nature of the block polymer in detail. It was found that the fluorescence intensity of AIE-active initiators decreased with the increase of temperature at the same concentration of dispersion, while the fluorescence intensity of the block polymer increased firstly, and then decreased after the temperature exceeded 37℃. Under the same conditions, by changing the concentrations of AIE-active initiators and block polymer in tetrahydrofuran/water mixed solvents, we found that the fluorescence intensity of AIE-active initiator decreased with the decrease of concentration, while the change tendency of fluorescence intensity for block polymer was similar as those obtained from the temperature changes. It is feasible to investigate the self-assembly behaviors of the amphiphilic block polymer by grafting the AIE active moiety to the terminal of polymer.
  • 加载中
    1. [1]

      Luo J D, Xie Z L, Lam J W Y. Aggregation-Induced Emission of 1-Methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chem Commun, 2001,18(12):1740-1741.  

    2. [2]

      Tang B Z, Zhan X, Yu G. Efficient Blue Emission from Siloles[J]. J Mater Chem, 2001,11(12):2974-2978. doi: 10.1039/b102221k

    3. [3]

      Hu R, Leung N L C, Tang B Z. AIE Macromolecules:Syntheses, Structures and Functionalities[J]. Chem Soc Rev, 2014,43(13):4494-4562. doi: 10.1039/C4CS00044G

    4. [4]

      Yang Z Y, Qin W, Leung N L C. A Mechanistic Study of AIE Processes of TPE Luminogens:Intramolecular Rotation vs Configurational Isomerization[J]. J Mater Chem C, 2016,4(1):99-107. doi: 10.1039/C5TC02924D

    5. [5]

      Chen L, Jiang Y B, Nie H. Rational Design of Aggregation-induced Emission Luminogen with Weak Electron Donor-Acceptor Interaction to Achieve Highly Efficient Undoped Bilayer OLEDs[J]. ACS Appl Mater Interfaces, 2014,6(19):17215-17225. doi: 10.1021/am505036a

    6. [6]

      Kim J Y, Yasuda T, Yang Y S. Bifunctional Star-burst Amorphous Molecular Materials for OLEDs:Achieving Highly Efficient Solid-State Luminescence and Carrier Transport Induced by Spontaneous Molecular Orientation[J]. Adv Mater, 2013,25(19):2666-2671. doi: 10.1002/adma.v25.19

    7. [7]

      Du X, Qi J, Zhang Z. Efficient Non-doped Near Infrared Organic Light-Emitting Devices Based on Fluorophores with Aggregation-Induced Emission Enhancement[J]. Chem Mater, 2012,24(11):2178-2185. doi: 10.1021/cm3008733

    8. [8]

      Yuan W Z, Chen S M, Lam J W Y. Towards High Efficiency Solid Emitters with Aggregation-Induced Emission and Electron-transport Characteristics[J]. Chem Commun, 2011,47(40):11216-11218. doi: 10.1039/c1cc14122h

    9. [9]

      Mu G Y, Zhang W Z, Xu P. Constructing New n-Type, Ambipolar, and p-Type Aggregation-induced Blue Luminogens by Gradually Tuning the Proportion of Tetrahphenylethene and Diphenylphophine Oxide[J]. J Phys Chem C, 2014,118(16):8610-8616. doi: 10.1021/jp501752a

    10. [10]

      Shi Y, Cai Y J, Wang Y J. 3, 4, 5-Triphenyl-1, 2, 4-triazole-based Multifunctional n-Type AIEgen[J]. Sci China Chem, 2017,60(5):635-641. doi: 10.1007/s11426-016-0433-x

    11. [11]

      Aragay G, Pino F, Merkoci A. Nanomaterials for Sensing and Destroying Pesticides[J]. Chem Rev, 2012,112(10):5317-5338. doi: 10.1021/cr300020c

    12. [12]

      Chen A, Chatterjee S. Nanomaterials Based Electrochemical Sensors for Biomedical Applications[J]. Chem Soc Rev, 2013,42(12):5425-5438. doi: 10.1039/c3cs35518g

    13. [13]

      Biju V. Chemical Modifications and Bioconjugate Reactions of Nanomaterials for Sensing, Imaging, Drug Delivery and Therapy[J]. Chem Soc Rev, 2014,43(3):744-764. doi: 10.1039/C3CS60273G

    14. [14]

      Blackburn W H, Dickerson E B, Smith M H. Peptide-functionalized Nanogels for Targeted siRNA Delivery[J]. Bioconjugate Chem, 2009,20(5):960-968. doi: 10.1021/bc800547c

    15. [15]

      Hong S W, Kim D Y, Lee J. Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide)[J]. Macromolecules, 2009,42(7):2756-2761. doi: 10.1021/ma802862h

    16. [16]

      Park T G, Hoffman A S. Sodium Chloride-induced Phase-transition in Nonionic Poly(N-isopropylacrylamide) Gel[J]. Macromolecules, 1993,26(19):5045-5048. doi: 10.1021/ma00071a010

    17. [17]

      Percec V, Guliashvili T, Ladislaw J S. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25℃[J]. J Am Chem Soc, 2006,43(128):14156-14165.  

    18. [18]

      Shibayama M, Fujikawa Y, Nomura S. Dynamic Light Scattering Study of Poly(N-isopropylacrylamide-co-acrylic acid) Gels[J]. Macromolecules, 1996,29(6):2019-2014. doi: 10.1021/ma951390q

    19. [19]

      Tang X D, Liang X C, Yang Q. AB(2)-Type Amphiphilic Block Copolymers Composed of Poly(ethylene glycol) and Poly(N-isopropylacrylamide) via Single-electron Transfer Living Radical Polymerization:Synthesis and Characterization[J]. J Polym Sci Part A:Polym Chem, 2009,47(17):4420-4427. doi: 10.1002/pola.v47:17

    20. [20]

      Deng Y, Zhang J Z, Li Y J. Thermoresponsive Graphene Oxide-PNIPAM Nanocomposites with Controllable Grafting Polymer Chains via Moderate in Situ SET-LRP[J]. J Polym Sci Part A:Polym Chem, 2012,50(21):4451-4458. doi: 10.1002/pola.v50.21

    21. [21]

      Heng C N, Liu M Y, Wang K. Fabrication of Silica Nanoparticle Based Polymer Nanocomposites via a Combination of Mussel Inspired Chemistry and SET-LRP[J]. RSC Adv, 2015,5(111):91308-91314. doi: 10.1039/C5RA19658B

    22. [22]

      Zhou H, Liu F, Wang X B. Aggregation Induced Emission Based Fluorescence pH and Temperature Sensors:Probing Ppolymer Interactions in Poly(N-isopropyl Acrylamide-co-tetra(phenyl)ethene Acrylate)/Poly(methacrylic acid) Interpenetrating Polymer Networks[J]. J Mater Chem C, 2015,3(21):5490-5498. doi: 10.1039/C5TC00752F

    23. [23]

      Situ B, Chen S J, Zhao E G. Real-time Imaging of Cell Behaviors in Living Organisms by a Mitochondria-targeting AIE Fluorogen[J]. Adv Funct Mater, 2016,26(39):7132-7138. doi: 10.1002/adfm.v26.39

    24. [24]

      Masci G, Giacomelli L, Crescenzi V. Atom Transfer Radical Polymerization of N-Isopropylacrylamide[J]. Macromol Rapid Commun, 2004,25(12):559-564.  

    25. [25]

      Feng C, Shen Z, Li Y G. PNIPAM-b-(PEA-g-PDMAEA) Double-hydrophilic Graft Copolymer:Synthesis and Its Application for Preparation of Gold Nanoparticles in Aqueous Media[J]. J Polym Sci Part A:Polym Chem, 2009,47(6):1811-1824.  

    26. [26]

      Feng C, Li Y J, Yang D. Synthesis of Well-defined PNIPAM-b-(PEA-g-P2VP) Double Hydrophilic Graft Copolymer via Sequential SET-LRP and ATRP and Its "Schizophrenic" Micellization Behavior in Aqueous Media[J]. J Polym Sci Part A:Polym Chem, 2010,48(1):15-23. doi: 10.1002/pola.v48:1

    27. [27]

      Salimimarand M, La D D, Al Kobaisi M. Influence of Odd and Even Alkyl Chains on Supramolecular Nanoarchitecture via Self-assembly of Tetraphenylethylene-based AIEgens[J]. Sci Rep, 2017,742898. doi: 10.1038/srep42898

    28. [28]

      Huang Z F, Zhang X Q, Zhang X Y. Synthesis of Amphiphilic Fluorescent PEGylated AIE Nanoparticles via RAFT Polymerization and Their Cell Imaging Applications[J]. RSC Adv, 2015,5(109):89472-89477. doi: 10.1039/C5RA15983K

    29. [29]

      Ma H C, Qi C X, Cheng C. AIE-active Tetraphenylethylene Cross-linked N-Isopropylacrylamide Polymer:A Long-term Fluorescent Cellular Tracker[J]. ACS Appl Mater Interfaces, 2016,8(13):8341-8348. doi: 10.1021/acsami.5b11091

    30. [30]

      Zhang C J, Yao X Y, Wang J. Tunable Emission of a Tetraphenylethylene Copolymer via Polymer Matrix Assisted and Aggregation-induced Emission[J]. Polym Chem, 2017,33(8):4835-4841.  

    31. [31]

      Han T, Gui C, Lam J W Y. High-contrast Visualization and Differentiation of Microphase Separation in Polymer Blends by Fluorescent AIE Probes[J]. Macromolecules, 2017,50(15):5807-5815. doi: 10.1021/acs.macromol.7b00973

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    6. [6]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

Metrics
  • PDF Downloads(3)
  • Abstract views(1068)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return