Citation: MA Hecheng, LIU Jianjun, YU Yingchun, ZUO Shengli. Research Progress in Preparation and Photocatalysis of Two-Dimensional Graphitic Carbon Nitride Nanosheets[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 259-268. doi: 10.11944/j.issn.1000-0518.2019.03.180241 shu

Research Progress in Preparation and Photocatalysis of Two-Dimensional Graphitic Carbon Nitride Nanosheets

  • Corresponding author: LIU Jianjun, ljj-717@163.com
  • Received Date: 21 July 2018
    Revised Date: 24 August 2018
    Accepted Date: 19 September 2018

    Fund Project: the National Natural Science Foundation of China 11172043Supported by the National Natural Science Foundation of China(No.11172043)

Figures(8)

  • Two-dimensional(2D) layered graphitic carbon nitride nanosheets(CNNS) have an anisotropic two-dimensional geometry and aromatic p-π conjugated backbone, a highly open planar structure and high specific surface area, and enhanced charge-carriers transfer rate and adjustable band gap related to the layer thickness, and become one of the top two-dimensional layered materials for research. This article reviews various preparation and modification methods and applications of carbon nitride nanosheets in environmental protection, energy conversion, and biosensing, etc., in recent years. Finally, it can be concluded that exploring the new preparation methods of carbon nitride nanosheets with high quality and finding more applications of the photocatalysis are the focus of the future research.
  • 加载中
    1. [1]

      Dubertret B, Heine T, Terrones M. The Rise of Two-Dimensional Materials[J]. Acc Chem Res, 2015,48(1):1-2. doi: 10.1021/ar5004434

    2. [2]

      Wu D, Zhang F, Liu P. Two-Dimensional Nanocomposites Based on Chemically Modified Graphene[J]. Chemistry, 2011,17(39):10804-10812. doi: 10.1002/chem.v17.39

    3. [3]

      Sun Y, Gao S, Lei F. Ultrathin Two-Dimensional Inorganic Materials:New Opportunities for Solid State Nanochemistry[J]. Acc Chem Res, 2015,48(1):3-12. doi: 10.1021/ar500164g

    4. [4]

      Huang X, Qi X, Boey F. Graphene-Based Composites[J]. Chem Soc Rev, 2012,41(2):666-686. doi: 10.1039/C1CS15078B

    5. [5]

      Zhuang X, Mai Y, Wu D. Two-Dimensional Soft Nanomaterials:A Fascinating World of Materials[J]. Adv Mater, 2015,27(3):403-427.  

    6. [6]

      Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    7. [7]

      Chen L, Hernandez Y, Feng X. From Nanographene and Graphene Nanoribbons to Graphene Sheets:Chemical Synthesis[J]. Angew Chem Int Ed, 2012,51(31):7640-7654. doi: 10.1002/anie.201201084

    8. [8]

      Tan C, Liu Z, Huang W. Non-Volatile Resistive Memory Devices Based on Solution-Processed Ultrathin Two-Dimensional Nanomaterials[J]. Chem Soc Rev, 2015,44(9):2615-2628. doi: 10.1039/C4CS00399C

    9. [9]

      Chen Y, Tan C, Zhang H. Two-Dimensional Graphene Analogues for Biomedical Applications[J]. Chem Soc Rev, 2015,44(9):2681-2701. doi: 10.1039/C4CS00300D

    10. [10]

      Heine T. Transition Metal Chalcogenides:Ultrathin Inorganic Materials with Tunable Electronic Properties[J]. Acc Chem Res, 2015,48(1):65-72. doi: 10.1021/ar500277z

    11. [11]

      Ma R, Sasaki T. Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality[J]. Acc Chem Res, 2015,48(1):136-143. doi: 10.1021/ar500311w

    12. [12]

      Huang X, Tan C, Yin Z. 25th Anniversary Article:Hybrid Nanostructures Based on Two-Dimensional Nanomaterials[J]. Adv Mater, 2014,26(14):2185-2204. doi: 10.1002/adma.v26.14

    13. [13]

      Li H, Wu J, Yin Z. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets[J]. Acc Chem Res, 2014,47(4):1067-1075. doi: 10.1021/ar4002312

    14. [14]

      Han S, Wu D, Li S. Graphene:A Two-Dimensional Platform for Lithium Storage[J]. Small, 2013,9(8):1173-1187. doi: 10.1002/smll.201203155

    15. [15]

      Huang X, Li S, Huang Y. Synthesis of Hexagonal Close-Packed Gold Nanostructures[J]. Nat Commun, 2011,2292. doi: 10.1038/ncomms1291

    16. [16]

      Wang X, Maeda K, Thomas A. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat Mater, 2009,8(1):76-80.  

    17. [17]

      Thomas A, Fischer A, Goettmann F. Graphitic Carbon Nitride Materials:Variation of Structure and Morphology and Their Use as Metal-Free Catalysts[J]. J Mater Chem, 2008,18(41):4893-4908. doi: 10.1039/b800274f

    18. [18]

      Ong W J, Tan L L, Ng Y H. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation are We a Step Closer to Achieving Sustainability?[J]. Chem Rev, 2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075

    19. [19]

      Wang Y, Wang X, Antonietti M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst:From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry[J]. Angew Chem Int Ed, 2012,51(1):68-89. doi: 10.1002/anie.201101182

    20. [20]

      Xu H, Yan J, She X. Graphene-Analogue Carbon Nitride:Novel Exfoliation Synthesis and Its Application in Photocatalysis and Photoelectrochemical Selective Detection of Trace Amount of Cu2+[J]. Nanoscale, 2014,6(3):1406-1415. doi: 10.1039/C3NR04759H

    21. [21]

      Wang X, Blechert S, Antonietti M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis[J]. ACS Catal, 2012,2(8):1596-1606. doi: 10.1021/cs300240x

    22. [22]

      Cao S, Low J, Yu J. Polymeric Photocatalysts Based on Graphitic Carbon Nitride[J]. Adv Mater, 2015,27(13):2150-2176. doi: 10.1002/adma.201500033

    23. [23]

      Takagaki A, Tagusagawa C, Hayashi S. Nanosheets as Highly Active Solid Acid Catalysts for Green Chemical Syntheses[J]. Energy Environ Sci, 2010,3(1):82-93.  

    24. [24]

      Liu J, Wang H, Chen Z P. Microcontact-Printing-Assisted Access of Graphitic Carbon Nitride Films with Favorable Textures Toward Photoelectrochemical Application[J]. Adv Mater, 2015,27(4):712-718. doi: 10.1002/adma.201404543

    25. [25]

      Tong H, Ouyang S, Bi Y. Nano-Photocatalytic Materials:Possibilities and Challenges[J]. Adv Mater, 2012,24(2):229-251. doi: 10.1002/adma.201102752

    26. [26]

      Zhang X, Xie X, Wang H. Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging[J]. J Am Chem Soc, 2013,135(1):18-21. doi: 10.1021/ja308249k

    27. [27]

      Schwinghammer K, Mesch M B, Duppel V. Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution[J]. J Am Chem Soc, 2014,136(5):1730-1733. doi: 10.1021/ja411321s

    28. [28]

      Zhao H, Yu H, Quan X. Fabrication of Atomic Single Layer Graphitic-C3N4 and Its High Performance of Photocatalytic Disinfection under Visible Light Irradiation[J]. Appl Catal B:Environ, 2014,152/153:46-50. doi: 10.1016/j.apcatb.2014.01.023

    29. [29]

      Xu J, Zhang L, Shi R. Chemical Exfoliation of Graphitic Carbon Nitride for Efficient Heterogeneous Photocatalysis[J]. J Mater Chem A, 2013,1(46)14766. doi: 10.1039/c3ta13188b

    30. [30]

      Ma T Y, Tang Y, Dai S. Proton-Functionalized Two-Dimensional Graphitic Carbon Nitride Nanosheet:An Excellent Metal-/Label-free Biosensing PLatform[J]. Small, 2014,10(12):2382-2389. doi: 10.1002/smll.v10.12

    31. [31]

      Yin Y, Han J, Zhang X. Facile Synthesis of Few-Layer-Thick Carbon Nitride Nanosheets by Liquid Ammonia-Assisted Lithiation Method and Their Photocatalytic Redox Properties[J]. RSC Adv, 2014,4(62):32690-32697. doi: 10.1039/C4RA06036A

    32. [32]

      Niu P, Zhang L, Liu G. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Adv Funct Mater, 2012,22(22):4763-4770. doi: 10.1002/adfm.v22.22

    33. [33]

      Dong F, Li Y, Wang Z. Enhanced Visible Light Photocatalytic Activity and Oxidation Ability of Porous Graphene-Like g-C3N4 Nanosheets via Thermal Exfoliation[J]. Appl Surf Sci, 2015,358:393-403. doi: 10.1016/j.apsusc.2015.04.034

    34. [34]

      Li G, Li L, Yuan H. Alkali-Assisted Mild Aqueous Exfoliation for Single-Layered and Structure-Preserved Graphitic Carbon Nitride Nanosheets[J]. J Colloid Interface Sci, 2017,495:19-26. doi: 10.1016/j.jcis.2017.01.112

    35. [35]

      Zhang X, Wang H, Wang H. Single-Layered Graphitic-C3N4 Quantum Dots for Two-Photon Fluorescence Imaging of Cellular Nucleus[J]. Adv Mater, 2014,26(26):4438-4443. doi: 10.1002/adma.v26.26

    36. [36]

      Chen L, Huang D, Ren S. Preparation of Graphite-Like Carbon Nitride Nanoflake Film with Strong Fluorescent and Electrochemiluminescent Activity[J]. Nanoscale, 2013,5(1):225-230.  

    37. [37]

      Du X, Zou G, Wang Z. A Scalable Chemical Route to Soluble Acidified Graphitic Carbon Nitride:An Ideal Precursor for Isolated Ultrathin g-C3N4 Nanosheets[J]. Nanoscale, 2015,7(19):8701-8706. doi: 10.1039/C5NR00665A

    38. [38]

      Cheng F, Wang H, Dong X. The Amphoteric Properties of g-C3N4 Nanosheets and Fabrication of Their Relevant Heterostructure Photocatalysts by an Electrostatic Re-Assembly Route[J]. Chem Commun, 2015,51(33):7176-7179. doi: 10.1039/C5CC01035G

    39. [39]

      Yang S, Feng X, Wang X. Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions[J]. Angew Chem Int Ed, 2011,50(23):5339-5343. doi: 10.1002/anie.201100170

    40. [40]

      Liu J, Huang J, Dontosova D. Facile Synthesis of Carbon Nitride Micro-/Nanoclusters with Photocatalytic Activity for Hydrogen Evolution[J]. RSC Adv, 2013,3(45):22988-22993. doi: 10.1039/c3ra44490b

    41. [41]

      Fan Q, Liu J, Yu Y. A Template Induced Method to Synthesize Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Activity under VIsible Light[J]. RSC Adv, 2014,4(106):61877-61883. doi: 10.1039/C4RA12033G

    42. [42]

      Liu W, Xu S, Guan S. Confined Synthesis of Carbon Nitride in a Layered Host Matrix with Unprecedented Solid-State Quantum Yield and Stability[J]. Adv Mater, 2018,30(2)1704376. doi: 10.1002/adma.v30.2

    43. [43]

      Lin B, An H, Yan X. Fish-Scale Structured g-C3N4 Nanosheet with Unusual Spatial Electron Transfer Property for High-Efficiency Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ, 2017,210:173-183. doi: 10.1016/j.apcatb.2017.03.066

    44. [44]

      Wang C, Fan H, Ren X. Porous Graphitic Carbon Nitride Nanosheets by Pre-Polymerization for Enhanced Photocatalysis[J]. Mater Charact, 2018,139:89-99. doi: 10.1016/j.matchar.2018.02.036

    45. [45]

      Fan Q, Huang Y, Zhang C. Superior Nanoporous Graphitic Carbon Nitride Photocatalyst Coupled with CdS Quantum Dots for Photodegradation of RhB[J]. Catal Today, 2016,264:250-256. doi: 10.1016/j.cattod.2015.08.006

    46. [46]

      Fan Q, Liu J, Yu Y. A Simple Fabrication for Sulfur Doped Graphitic Carbon Nitride Porous Rods with Excellent Photocatalytic Activity Degrading RhB Dye[J]. Appl Surf Sci, 2017,391:360-368. doi: 10.1016/j.apsusc.2016.04.055

    47. [47]

      Yan J, Wu H, Chen H. Fabrication of TiO2/C3N4 Heterostructure for Enhanced Photocatalytic Z-Scheme OVerall Water Splitting[J]. Appl Catal B:Environ, 2016,191:130-137. doi: 10.1016/j.apcatb.2016.03.026

    48. [48]

      Ye R Q, Fang H B, Zheng Y Z. Fabrication of CoTiO3/g-C3N4 Hybrid Photocatalysts with Enhanced H2 Evolution:Z-Scheme Photocatalytic Mechanism Insight[J]. ACS Appl Mater Interfaces, 2016,8(22)13879. doi: 10.1021/acsami.6b01850

    49. [49]

      Katsumata H, Tachi Y, Suzuki T. Z-Scheme Photocatalytic Hydrogen Production over WO3/g-C3N4 Composite Photocatalysts[J]. RSC Adv, 2014,4(41):21405-21409. doi: 10.1039/C4RA02511C

    50. [50]

      Deng Y, Tang L, Zeng G. Insight into Highly Efficient Simultaneous Photocatalytic Removal of Cr(Ⅵ) and 2, 4-Diclorophenol under Visible Light Irradiation by Phosphorus Doped Porous Ultrathin g-C3N4 Nanosheets from Aqueous Media:Performance and Reaction Mechanism[J]. Appl Catal B:Environ, 2017,203:343-354. doi: 10.1016/j.apcatb.2016.10.046

    51. [51]

      Pan Z, Zheng Y, Guo F. Decorating CoP and Pt Nanoparticles on Graphitic Carbon Nitride Nanosheets to Promote Overall Water Splitting by Conjugated Polymers[J]. ChemSusChem, 2017,10(1):87-90. doi: 10.1002/cssc.201600850

    52. [52]

      Ran J, Ma T Y, Gao G. Porous P-Doped Graphitic Carbon Nitride Nanosheets for Synergistically Enhanced Visible-Light Photocatalytic H2 Production[J]. Energy Environ Sci, 2015,8(12):3708-3717. doi: 10.1039/C5EE02650D

    53. [53]

      Yang S, Gong Y, Zhang J. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light[J]. Adv Mater, 2013,25(17):2452-2456. doi: 10.1002/adma.v25.17

    54. [54]

      Zhao H, Yu H, Quan X. Atomic Single Layer Graphitic-C3N4:Fabrication and Its High Photocatalytic Performance under Visible Light Irradiation[J]. RSC Adv, 2014,4(2):624-628. doi: 10.1039/C3RA45776A

    55. [55]

      Shao L, Jiang D, Xiao P. Enhancement of g-C3N4 Nanosheets Photocatalysis by Synergistic Interaction of ZnS Microsphere and RGO Inducing Multistep Charge Transfer[J]. Appl Catal B:Environ, 2016,198:200-210. doi: 10.1016/j.apcatb.2016.05.056

  • 加载中
    1. [1]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    6. [6]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    18. [18]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

Metrics
  • PDF Downloads(22)
  • Abstract views(2110)
  • HTML views(557)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return