Citation: XING Chenli, WANG Jing, ZHANG Zhaohui, XIE Dandan, LÜ Piaopiao. Multiple Metal Ion Imprinted Electrochemical Sensor with Enhanced Sensitivity by Graphene Oxide-C60 Composite[J]. Chinese Journal of Applied Chemistry, ;2019, 36(3): 341-348. doi: 10.11944/j.issn.1000-0518.2019.03.180160 shu

Multiple Metal Ion Imprinted Electrochemical Sensor with Enhanced Sensitivity by Graphene Oxide-C60 Composite

  • Corresponding author: ZHANG Zhaohui, zhaohuizhang77@163.com
  • Received Date: 8 May 2018
    Revised Date: 6 June 2018
    Accepted Date: 20 July 2018

    Fund Project: the National Natural Science Foundation of China 21565014Supported by the National Natural Science Foundation of China(No.21767011, No.21565014), the Innovation Fund Designated for Graduate Students of Jishou University and the Collaborative Innovation Center 2011 of Hunan Provincethe National Natural Science Foundation of China 21767011

Figures(8)

  • A novel multiple-ion imprinted sensor based on graphene oxide/fullerene composite(GO-C60) was developed for simultaneous and selective determination of Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ). The multiple-ion imprinted polymer was prepared with methacrylic acid and edetic acid as the functional monomer and ligand, respectively. The multiple-ion imprinted sensor was prepared by dispensing the imprinted polymer onto the GO-C60 modified carbon electrode surface. The performance of multiple-ion imprinted sensor was investigated using cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy in details. Under the optimized conditions, a linear relationship existed between the response currents of the multiple-ion imprinted sensor and the negative logarithm of ion concentrations ranging from 1.0×10-9 mol/L to 5.0×10-7 mol/L with the detection limit of 5.0×10-10, 5.0×10-10 and 1.0×10-10 mol/L for Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ), respectively. The multiple-ion imprinted sensor was successfully used for simultaneous detection of trace level Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) ions in real samples.
  • 加载中
    1. [1]

      Dai G, Peng N, Zhong J. Effect of Metals on Microcystin Abundance and Environmental Fate[J]. Environ Pollut, 2017,226:154-162. doi: 10.1016/j.envpol.2017.04.013

    2. [2]

      Yu J, Yang S, Sun D. Simultaneously Determination of Multi Metal Elements in Water Samples by Liquid Cathode Glow Discharge-Atomic Emission Spectrometry[J]. Microchem J, 2016,128:325-330. doi: 10.1016/j.microc.2016.05.019

    3. [3]

      Boutorabi L, Rajabi M, Bazregar M. Selective Determination of Chromium(Ⅵ) Ions Using In-Tube Electro-Membrane Extraction Followed by Flame Atomic Absorption Spectrometry[J]. Microchem J, 2017,132:378-384. doi: 10.1016/j.microc.2017.02.028

    4. [4]

      Silva F L, Duarte T A, Melo L S. Development of a Wet Digestion Method for Paints for the Determination of Metals and Metalloids Using Inductively Coupled Plasma Optical Emission Spectrometry[J]. Talanta, 2016,146(4/5):188-194.  

    5. [5]

      Jalalvand A R, Goicoechea H C, Rutledge D N. Applications and Challenges of Multi-way Calibration in Electrochemical Analysis[J]. TrAC-Trend Anal Chem, 2017,87:32-48. doi: 10.1016/j.trac.2016.11.002

    6. [6]

      ZHANG Minglei, ZHANG Zhaohui, LUO Lijuan. Preparation and Adsorption Properties of Magnetic Fe3O4@SiO2@CS Cadmium Ion-Imprinted Polymer[J]. Chem J Chinese Univ, 2011,32(12):2763-2768.  

    7. [7]

      LIU Qiuye, HE Xiwen, LI Wenyou. Studies on Chitosan Coated on Silica for Imprinting Bovine Hemoglobin[J]. Chem J Chinese Univ, 2009,30(4):691-696. doi: 10.3321/j.issn:0251-0790.2009.04.010

    8. [8]

      Laatikainen K, Udomsap D, Siren H. Effect of Template Ion-Ligand Complex Stoichiometry on Selectivity of Ion-Imprinted Polymers[J]. Talanta, 2015,134:538-545. doi: 10.1016/j.talanta.2014.11.050

    9. [9]

      AN Fuqiang, GAO Baojiao, LI Gang. Studies on Preparation of Ion-Imprinted Polyethyleneimine on Silica Gel Particles and Binding Properties for Metal Ions[J]. Acta Polym Sin, 2007(4):366-373. doi: 10.3321/j.issn:1000-3304.2007.04.012

    10. [10]

      Lin S, Wei W, Wu X. Selective Recovery of Pd(Ⅱ) from Extremely Acidic Solution Using Ion-Imprinted Chitosan Fiber:Adsorption Performance and Mechanisms[J]. J Hazard Mater, 2015,299(6):10-17.  

    11. [11]

      Liu H, Kong D, Sun W. Effect of anions on the Polymerization and Adsorption Processes of Cu(Ⅱ) Ion-Imprinted Polymers[J]. Chem Eng J, 2016,303:348-358. doi: 10.1016/j.cej.2016.06.004

    12. [12]

      Luo X, Guo B, Luo J. Recovery of Lithium from Wastewater Using Development of Li Ion-Imprinted Polymers[J]. ACS Sustainable Chem Eng, 2015,3:460-467. doi: 10.1021/sc500659h

    13. [13]

      FAN Hongtao, SUI Dianpeng, ZHAO Lixing. Preparation of Cobalt(Ⅱ) Ion Imprinted Silica Gel Sorbents by Surface Imprinting Technique and Its Adsorption Properties[J]. Chem J Chinese Univ, 2011,32(12):2902-2907.  

    14. [14]

      Li J, Zhang L, Wei G. Highly Sensitive and Doubly Orientated Selective Molecularly Imprinted Electrochemical Sensor for Cu2+[J]. Biosens Bioelectron, 2015,69:316-320. doi: 10.1016/j.bios.2015.03.010

    15. [15]

      Kokkios C, Economou A, Raptis I. Lithographically Fabricated Disposable Bismuth-Film Electrodes for the Trace Determination of Pb(Ⅱ) and Cd(Ⅱ) by Anodic Stripping Voltammetry[J]. Electrochim Acta, 2008,53(2):5294-5299.  

    16. [16]

      Hummers W S, Offeman R E. Functionalized Graphene and Graphene Oxide:Materials Synthesis and Electronic Applications[J]. J Am Chem Soc, 1958,80:1339-1339. doi: 10.1021/ja01539a017

    17. [17]

      Zhang Z H, Yang X, Zhang H B. Novel Molecularly Imprinted Polymers Based on Multi-Walled Carbon Nanotubes with Binary Functional Monomer for the Solid-Phase Extraction of Erythromycin from Chicken Muscle[J]. J Chromatogr B, 2011,879:1617-1624. doi: 10.1016/j.jchromb.2011.03.054

  • 加载中
    1. [1]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    12. [12]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    16. [16]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    19. [19]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    20. [20]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

Metrics
  • PDF Downloads(2)
  • Abstract views(1022)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return