Citation: SU Zhe, QIN Wenjing, BAI Lei, SUN Pengfei, YU Changmin, FAN Quli, LI Lin. Research Progress on Bioimaging with the Second Near-infrared Fluorescence Probes[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 123-136. doi: 10.11944/j.issn.1000-0518.2019.02.180116 shu

Research Progress on Bioimaging with the Second Near-infrared Fluorescence Probes

  • Corresponding author: YU Changmin, iamcmyu@njtech.edu.cn LI Lin, iamlli@njtech.edu.cn
  • Received Date: 16 April 2018
    Revised Date: 11 June 2018
    Accepted Date: 4 July 2018

    Fund Project: the National Natural Science Foundation of China 81672508the Jiangsu Provincial Foundation for Distinguished Young Scholars BK20170041the National Natural Science Foundation of China 61505076Supported by the National Natural Science Foundation of China(No.81672508, No.61505076, No.21708034), the Jiangsu Provincial Foundation for Distinguished Young Scholars(No.BK20170041)the National Natural Science Foundation of China 21708034

Figures(13)

  • Due to simple operation, high resolution and real-time imaging, fluorescence technology has been widely used in detection and bioimaging. The second near-infrared window dyes(NIR-Ⅱ, 1000~1700 nm) have longer emission wavelength, less interference with light scattering and tissue autofluorescence, resulting in higher temporal and spatial resolution and deeper imaging depth in tissue imaging. In this review, we mainly introduce the designed mechanism and research progress in bioimaging based on NIR-Ⅱ dyes, and further give an outlook in the following studies.
  • 加载中
    1. [1]

      Guo Z, Park S, Yoon J. Recent Progress in the Development of Near-infrared Fluorescent Probes for Bioimaging Applications[J]. Chem Soc Rev, 2014,43(1):16-29. doi: 10.1039/C3CS60271K

    2. [2]

      Shanmugam V, Selvakumar S, Yeh C S. Near-Infrared Light-Responsive Nanomaterials in Cancer Therapeutics[J]. Chem Soc Rev, 2014,43(17):6254-6287. doi: 10.1039/C4CS00011K

    3. [3]

      Sun Y, Qu C, Chen H. Novel Benzo-bis(1, 2, 5-thiadiazole) Fluorophores for in Vivo NIR-Ⅱ Imaging of Cancer[J]. Chem Sci, 2016,7(9):6203-6207. doi: 10.1039/C6SC01561A

    4. [4]

      Diao S, Hong G, Antaris A L. Biological Imaging Without Autofluorescence in the Second Near-infrared Region[J]. Nano Res, 2015,8(9):3027-3034. doi: 10.1007/s12274-015-0808-9

    5. [5]

      Smith A M, Mohs A M, Nie S. Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain[J]. Nat Nanotechnol, 2009,4(1):56-63.  

    6. [6]

      Pansare V J, Hejazi S, Faenza W J. Review of Long-Wavelength Optical and NIR Imaging Materials:Contrast Agents, Fluorophores, and Multifunctional Nano Carriers[J]. Chem Mater, 2012,24(5):812-827. doi: 10.1021/cm2028367

    7. [7]

      Hong G, Diao S, Chang J. Through-Skull Fluorescence Imaging of the Brain in a New Near-infrared Window[J]. Nat Photonics, 2014,8(9):723-730. doi: 10.1038/nphoton.2014.166

    8. [8]

      Robinson J T, Hong G, Liang Y. In Vivo Fluorescence Imaging in the Second Near-infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake[J]. J Am Chem Soc, 2012,134(25):10664-10669. doi: 10.1021/ja303737a

    9. [9]

      Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991,354(6348):56-58. doi: 10.1038/354056a0

    10. [10]

      Balasubramanian K, Burghard M. Chemically Functionalized Carbon Nanotubes[J]. Small, 2010,1(2):180-192.  

    11. [11]

      De La Zerda A, Zavaleta C, Keren S. Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice[J]. Nat Nanotechnol, 2008,3(9):557-562. doi: 10.1038/nnano.2008.231

    12. [12]

      Cherukuri P, Gannon C J, Leeuw T K. Mammalian Pharmacokinetics of Carbon Nanotubes Using Intrinsic Near-infrared Fluorescence[J]. Proc Natl Acad Sci USA, 2006,103(50):18882-18886. doi: 10.1073/pnas.0609265103

    13. [13]

      Chen Z, Tabakman S M, Goodwin A P. Protein Microarrays with Carbon Nanotubes as Multicolor Raman Labels[J]. Nat Biotechnol, 2008,26(11):1285-1292. doi: 10.1038/nbt.1501

    14. [14]

      Welsher K, Liu Z, Sherlock S P. A Route to Brightly Fluorescent Carbon Nanotubes for Near-infrared Imaging in Mice[J]. Nat Nanotechnol, 2009,4(11):773-780. doi: 10.1038/nnano.2009.294

    15. [15]

      Welsher K, Sherlock S P, Dai H. Deep-Tissue Anatomical Imaging of Mice Using Carbon Nanotube Fluorophores in the Second Near-infrared Window[J]. Proc Natl Acad Sci USA, 2011,108(22):8943-8948. doi: 10.1073/pnas.1014501108

    16. [16]

      Schramm P, Schellinger P D, Fiebach J B. Comparison of CT and CT Angiography Source Images with Diffusion-Weighted Imaging in Patients with Acute Stroke Within 6 Hours after Onset[J]. Stroke, 2002,33(10):2426-2432. doi: 10.1161/01.STR.0000032244.03134.37

    17. [17]

      Wright S N, Kochunov P, Mut F. Digital Reconstruction and Morphometric Analysis of Human Brain Arterial Vasculature from Magnetic Resonance Angiography[J]. Neuroimage, 2013,82:170-181. doi: 10.1016/j.neuroimage.2013.05.089

    18. [18]

      Huang C H, Chen C C, Siow T Y. High-Resolution Structural and Functional Assessments of Cerebral Microvasculature Using 3D Gas DeltaR2*-mMRA[J]. PLoS One, 2013,8(11)e78186. doi: 10.1371/journal.pone.0078186

    19. [19]

      Flohr T G, Mccollough C H, Bruder H. First Performance Evaluation of a Dual-source CT(DSCT) System[J]. EurJ Radiol, 2006,16(2):256-268. doi: 10.1007/s00330-005-2919-2

    20. [20]

      Jacoby C, Boring Y C, Beck A. Dynamic Changes in Murine Vessel Geometry Assessed by High-Resolution Magnetic Resonance Angiography:A 9.4T Study[J]. J Magn Reson Imaging, 2008,28(3):637-645. doi: 10.1002/jmri.v28:3

    21. [21]

      Paulus M J, Gleason S S, Kennel S J. High Resolution X-Ray Computed Tomography:An Emerging Tool for Small Animal Cancer Research[J]. Neoplasia, 2000,2(1/2):62-70.  

    22. [22]

      Frangioni J. In Vivo Near-infrared Fluorescence Imaging[J]. Curr Opin Chem Biol, 2003,7(5):626-634. doi: 10.1016/j.cbpa.2003.08.007

    23. [23]

      Horton N G, Wang K, Kobat D. In Vivo Three-Photon Microscopy of Subcortical Structures within an Intact Mouse Brain[J]. Nat Photonics, 2013,7(3):205-209. doi: 10.1038/nphoton.2012.336

    24. [24]

      Drew P J, Shih A Y, Driscoll J D. Chronic Optical Access Through a Polished and Reinforced Thinned Skull[J]. Nat Methods, 2010,7(12):981-984. doi: 10.1038/nmeth.1530

    25. [25]

      Yang G, Pan F, Parkhurst C N. Thinned-Skull Cranial Window Technique for Long-Term Imaging of the Cortex in Live Mice[J]. Nat Protoc, 2010,5(2):201-208. doi: 10.1038/nprot.2009.222

    26. [26]

      Diao S, Blackburn J L, Hong G. Fluorescence Imaging in Vivo at Wavelengths Beyond 1500 nm[J]. Angew Chem Int Ed, 2015,54(49):14758-14762. doi: 10.1002/anie.201507473

    27. [27]

      Kim S, Fisher B, Eisler H J. Type-Ⅱ Quantum Dots:CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures[J]. J Am Chem Soc, 2003,125(38):11466-11467. doi: 10.1021/ja0361749

    28. [28]

      Nikolai G, I Igor L R, Maria R G. Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals[J]. Nano Lett, 2003,3(3):369-372. doi: 10.1021/nl0259333

    29. [29]

      Gaponik N, Talapin D V, Rogach A L. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:From Water to Nonpolar Organic Solvents[J]. Nano Lett, 2002,2(8):803-806. doi: 10.1021/nl025662w

    30. [30]

      Xie R, Peng X. Synthetic Scheme for High-Quality InAs Nanocrystals Based on Self-focusing and One-Pot Synthesis of InAs-Based Core-Shell Nanocrystals[J]. Angew Chem Int Ed, 2008,47(40):7677-7680. doi: 10.1002/anie.v47:40

    31. [31]

      Liu Z, Kumbhar A, Xu D. Coreduction Colloidal Synthesis of Ⅲ~Ⅴ Nanocrystals:The Case of InP[J]. Angew Chem Int Ed, 2008,47(19):3540-3542. doi: 10.1002/(ISSN)1521-3773

    32. [32]

      Liu W, Greytak A B, Lee J. Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand[J]. J Am Chem Soc, 2010,132(2):472-483. doi: 10.1021/ja908137d

    33. [33]

      Hyun B R, Chen H, Rey D A. Near-Infrared Fluorescence Imaging with Water-Soluble Lead Salt Quantum Dots[J]. J Phys Chem B, 2007,111(20):5726-5730. doi: 10.1021/jp068455j

    34. [34]

      Sun H, Zhang F, Wei H. The Effects of Composition and Surface Chemistry on the Toxicity of Quantum Dots[J]. J Mater Chem B, 2013,1(47):6485-6494. doi: 10.1039/c3tb21151g

    35. [35]

      Reiss P, Protiere M, Li L. Core/Shell Semiconductor Nanocrystals[J]. Small, 2009,5(2):154-168. doi: 10.1002/smll.200800841

    36. [36]

      Wang C, Wang Y, Xu L. Facile Aqueous-Phase Synthesis of Biocompatible and Fluorescent Ag2S Nanoclusters for Bioimaging:Tunable Photoluminescence from Red to Near Infrared[J]. Small, 2012,8(20):3137-3142. doi: 10.1002/smll.v8.20

    37. [37]

      Hocaoglu I, Demir F, Birer O. Emission Tunable, Cyto/Hemocompatible, Near-IR-Emitting Ag2S Quantum Dots by Aqueous Decomposition of DMSA[J]. Nanoscale, 2014,6(20):11921-11931. doi: 10.1039/C4NR02935F

    38. [38]

      Chen H, Li B, Zhang M. Characterization of Tumor-Targeting Ag2S Quantum Dots for Cancer Imaging and Therapy in Vivo[J]. Nanoscale, 2014,6(21):12580-12590. doi: 10.1039/C4NR03613A

    39. [39]

      Gu Y, Cui R, Zhang Z. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging[J]. J Am Chem Soc, 2011,134(1):79-82.  

    40. [40]

      Du Y, Bing X, Tao F. Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor[J]. J Am Chem Soc, 2010,132(5):1470-1471. doi: 10.1021/ja909490r

    41. [41]

      Zhang Y, Hong G, Zhang Y. Ag2S Quantum Dot:A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-infrared Window[J]. ACS Nano, 2012,6(5):3695-3702. doi: 10.1021/nn301218z

    42. [42]

      Shen S, Zhang Y, Peng L. Matchstick-Shaped Ag2S-ZnS Heteronanostructures Preserving both UV/Blue and Near-infrared Photoluminescence[J]. Angew Chem Int Ed, 2011,50(31):7115-7118. doi: 10.1002/anie.v50.31

    43. [43]

      Hong G, Robinson J T, Zhang Y. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-infrared Region[J]. Angew Chem Int Ed, 2012,51(39):9818-9821. doi: 10.1002/anie.201206059

    44. [44]

      Dong B, Li C, Chen G. Facile Synthesis of Highly Photoluminescent Ag2Se Quantum Dots as a New Fluorescent Probe in the Second Near-infrared Window for in Vivo Imaging[J]. Chem Mater, 2013,25(12):2503-2509. doi: 10.1021/cm400812v

    45. [45]

      Chen G, Tian F, Zhang Y. Tracking of Transplanted Human Mesenchymal Stem Cells in Living Mice Using Near-Infrared Ag2S Quantum Dots[J]. Adv Funct Mater, 2014,24(17):2481-2488. doi: 10.1002/adfm.201303263

    46. [46]

      Tan M C, Kumar G A, Riman R E. Synthesis and Optical Properties of Infrared-Emitting YF3:Nd Nanoparticles[J]. J Appl Phys, 2009,106(6)063118. doi: 10.1063/1.3168442

    47. [47]

      Naczynski D J, Tan M C, Zevon M. Rare-Earth-Doped Biological Composites as in Vivo Shortwave Infrared Reporters[J]. Nat Commun, 2013,4(3):1345-1346.  

    48. [48]

      Liu B, Chen X, Zou Y. A Benzo[J]. Polym Chem, 2013,4(3):470-476. doi: 10.1039/C2PY20580G

    49. [49]

      Li G, Shrotriya V, Huang J. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends[J]. Nat Mater, 2005,4(11):864-868. doi: 10.1038/nmat1500

    50. [50]

      Kawamura Y, Yanagida S, Forrest S R. Energy transfer in Polymer Electrophosphorescent Light Emitting Devices with Single and Multiple Doped Luminescent Layers[J]. J Appl Phys, 2002,92(1):87-93. doi: 10.1063/1.1479751

    51. [51]

      Burroughes J H, Bradley D D C, Brown A R. Light-Emitting Diodes Based on Conjugated Polymers[J]. Nature, 1990,347(6293):539-541. doi: 10.1038/347539a0

    52. [52]

      Facchetti A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications[J]. Chem Mater, 2011,23(3):733-758. doi: 10.1021/cm102419z

    53. [53]

      Ong B S, Wu Y, Liu P. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors[J]. J Am Chem Soc, 2004,126(11):3378-3379. doi: 10.1021/ja039772w

    54. [54]

      Hong G, Zou Y, Antaris A L. Ultrafast Fluorescence Imaging in Vivo with Conjugated Polymer Fluorophores in the Second Near-infrared Window[J]. Nat Commun, 2014,54206. doi: 10.1038/ncomms5206

    55. [55]

      Shou K, Tang Y, Chen H. Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for in Vivo Second Near-infrared Window Imaging and Image-Guided Tumor Surgery[J]. Chem Sci, 2018,9(12):3105-3110. doi: 10.1039/C8SC00206A

    56. [56]

      Wu J, You L, Lan L. Semiconducting Polymer Nanoparticles for Centimeters-Deep Photoacoustic Imaging in the Second Near-infrared Window[J]. Adv Mater, 2017,29(41)1703403. doi: 10.1002/adma.v29.41

    57. [57]

      Guo B, Sheng Z, Kenry K. Biocompatible Conjugated Polymer Nanoparticles for Highly Efficient Photoacoustic Imaging of Orthotopic Brain Tumors in the Second Near-infrared Window[J]. Mater Horiz, 2017,4(6):1151-1156. doi: 10.1039/C7MH00672A

    58. [58]

      Jiang Y, Upputuri P K, Xie C. Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-infrared Window[J]. Nano Lett, 2017,17(8):4964-4969. doi: 10.1021/acs.nanolett.7b02106

    59. [59]

      Yang Q, Ma Z, Wang H. Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-Ⅱ Window[J]. Adv Mater, 2017,29(12)1605497. doi: 10.1002/adma.v29.12

    60. [60]

      Zhu S, Yang Q, Antaris A L. Molecular Imaging of Biological Systems with a Clickable Dye in the Broad 800- to 1, 700-nm Near-infrared Window[J]. Proc Natl Acad Sci USA, 2017,114(5):962-967. doi: 10.1073/pnas.1617990114

    61. [61]

      Qian G, Zhong Z, Luo M. Simple and Efficient Near-infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission Above 1000 nm[J]. Adv Mater, 2009,21(1):111-116. doi: 10.1002/adma.v21:1

    62. [62]

      Antaris A L, Chen H, Cheng K. A Small-Molecule Dye for NIR-Ⅱ Imaging[J]. Nat Mater, 2015,15(2):235-242.  

    63. [63]

      Antaris A L, Chen H, Diao S. A High Quantum Yield Molecule-Protein Complex Fluorophore for Near-infrared Ⅱ Imaging[J]. Nat Commun, 2017,815269. doi: 10.1038/ncomms15269

    64. [64]

      Feng Y, Zhu S, Antaris A L. Live Imaging of Follicle Stimulating Hormone Receptors in Gonads and Bones Using Near Infrared Ⅱ Fluorophore[J]. Chem Sci, 2017,8(5):3703-3711. doi: 10.1039/C6SC04897H

    65. [65]

      Sun Y, Zeng X, Xiao Y. Novel Dual-Function Near-infrared Ⅱ Fluorescence and PET Probe for Tumor Delineation and Image-Guided Surgery[J]. Chem Sci, 2018,9(8):2092-2097. doi: 10.1039/C7SC04774F

    66. [66]

      Sun Y, Ding M, Zeng X. Novel Bright-Emission Small-Molecule NIR-Ⅱ Fluorophores for in Vivo Tumor Imaging and Image-Guided Surgery[J]. Chem Sci, 2017,8(5):3489-3493. doi: 10.1039/C7SC00251C

    67. [67]

      Li B N, Lu L F, Zhao M Y. An Efficient 1064 nm NIR-Ⅱ Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging[J]. Angew Chem Int Ed, 2018,57(25):7483-7487. doi: 10.1002/anie.201801226

    68. [68]

      Cosco E D, Caram J R, Bruns O T. Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging[J]. Angew Chem Int Ed, 2017,56(42):13126-13129. doi: 10.1002/anie.201706974

    69. [69]

      Chen J R, Wong J B, Kuo P Y. Synthesis and Characterization of Coumarin-Based Spiropyran Photochromic Colorants[J]. Org Lett, 2008,10(21):4823-4826. doi: 10.1021/ol8018902

    70. [70]

      Shou K, Qu C, Sun Y. Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIR-Ⅱ Probe[J]. Adv Funct Mater, 2017,27(23)1700995. doi: 10.1002/adfm.201700995

    71. [71]

      Tao Z, Hong G, Shinji C. Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000 nm[J]. Angew Chem Int Ed, 2013,52(49):13002-13006. doi: 10.1002/anie.201307346

    72. [72]

      Xu G, Yan Q, Lv X. Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-infrared Window Emission[J]. Angew Chem Int Ed, 2018,57(14):3626-3630. doi: 10.1002/anie.201712528

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(406)
  • Abstract views(12521)
  • HTML views(4705)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return