Citation: LI Jinge, CHEN Feng, LAN Fujun, ZHAO Caixian. Foam-Like Graphitic Carbon Nitride: Synthesis and Visible-Light-Driven Photocatalytic Activity for Hydrogen Evolution[J]. Chinese Journal of Applied Chemistry, ;2019, 36(1): 65-74. doi: 10.11944/j.issn.1000-0518.2019.01.180040 shu

Foam-Like Graphitic Carbon Nitride: Synthesis and Visible-Light-Driven Photocatalytic Activity for Hydrogen Evolution

  • Corresponding author: ZHAO Caixian, caixianzhao74@gmail.com
  • Received Date: 8 February 2018
    Revised Date: 30 March 2018
    Accepted Date: 26 May 2018

    Fund Project: the Sepiolite Porjection Foundation of Xiangtan University 2015EP10the National Natural Science Foundation of China U1462121Supported by the National Natural Science Foundation of China(No.U1462121), the Sepiolite Porjection Foundation of Xiangtan University(No.2015EP10)

Figures(13)

  • The foam-like graphitic carbon nitride(g-C3N4) was synthesized by using melamine as the raw material and cheap sepiolite as the hard template, respectively. The as-prepared samples were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), Fourier transform infrared(FT-IR) spectrometry, Brunauer-Emmett-Teller(BET) method, ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS), photoluminescence(PL) spectroscopy and electrochemical measurements, and the photocatalytic activity was evaluated by visible light driven hydrogen evolution. The results show that polydopamine can act as adhesives, which can improve the combined degree between the template and melamine, leading to the increase of the specific surface area of foam-like graphitic carbon nitride. Furthermore, the specific surface area of the obtained sample increases with the increase of polydopamine-modified sepiolite, when the mass ratio of polydopamine-modified sepiolite and melamine is 2:1, the specific surface area of the foam like g-C3N4 is as high as 389.2 m2/g and the visible light driven H2 evolution rate can reach up to 1061.87 μmol/(g·h), which is~7 times greater than that of bulk g-C3N4(151.24 μmol/(g·h)) and 2.6 times higher than that of g-C3N4 synthesized by unmodified sepiolite, respectively. This indicates that the foam-like g-C3N4 with a large surface area can provide more active sites and improve the diffusion process of multi-phase photocatalytic reaction, enhancing the separation efficiency of photogenerated electrons and holes. Additionally, the unique cavity structure can also effectively improve the utilization of light, leading to a significant improvement in the photocatalytic performance.
  • 加载中
    1. [1]

      Gong Y, Wang J, Wei Z. Combination of Carbon Nitride and Carbon Nanotubes:Synergistic Catalysts for Energy Conversion[J]. ChemSusChem, 2014,7(8):2303-2309. doi: 10.1002/cssc.201402078

    2. [2]

      Dai L, Dong W C, Baek J B. Carbon Nanomaterials for Advanced Energy Conversion and Storage[J]. Small, 2012,8(8):1122-1122. doi: 10.1002/smll.201290048

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0

    4. [4]

      Zhao C, Luo H, Chen F. A Novel Composite of TiO2 Nanotubes with Remarkably High Efficiency for Hydrogen Production in Solar-Driven Water Splitting[J]. Energy Environ Sci, 2014,7(5):1700-1707. doi: 10.1039/c3ee43165g

    5. [5]

      Liu S, Yin K, Ren W. Tandem Photocatalytic Oxidation of Rhodamine B over Surface Fluorinated Bismuth Vanadate Crystals[J]. J Mater Chem, 2012,22(34):17759-17767. doi: 10.1039/c2jm33337f

    6. [6]

      Ong W J, Tan L L, Ng Y H. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation:Are We a Step Closer to Achieving Sustainability?[J]. Chem Rev, 2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075

    7. [7]

      Jang E S, Won J H, Hwang S J. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity[J]. Adv Mater, 2006,18(24):3309-3312. doi: 10.1002/(ISSN)1521-4095

    8. [8]

      Wang X, Liao M, Zhong Y. ZnO Hollow Spheres with Double-Yolk Egg Structure for High-Performance Photocatalysts and Photodetectors[J]. Adv Mater, 2012,24(25):3421-3425. doi: 10.1002/adma.v24.25

    9. [9]

      Wu S, Cao H, Yin S. Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals[J]. J Phys Chem C, 2009,113(41):17893-17898. doi: 10.1021/jp9068762

    10. [10]

      Liu S, Huang G, Yu J. Porous Fluorinated SnO2 Hollow Nanospheres:Transformative Self-assembly and Photocatalytic Inactivation of Bacteria[J]. ACS Appl Mater Interfaces, 2014,6(4):2407-2414. doi: 10.1021/am4047975

    11. [11]

      And S W C, Zhu Y J. Hierarchically Nanostructured α-Fe2O3 Hollow Spheres:Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment[J]. J Phys Chem C, 2008,112(16):6253-6257. doi: 10.1021/jp8000465

    12. [12]

      Zhou X M, Xu Q L, Lei W Y. Origin of Tunable Photocatalytic Selectivity of Well-Defined α-Fe2O3 Nanocrystals[J]. Small, 2014,10(4):674-679. doi: 10.1002/smll.201301870

    13. [13]

      Liu S, Yin K, Ren W. Tandem Photocatalytic Oxidation of Rhodamine B over Surface Fluorinated Bismuth Vanadate Crystals[J]. J Mater Chem, 2012,22(34):17759-17767. doi: 10.1039/c2jm33337f

    14. [14]

      Cao S W, Yin Z, Barber J. Preparation of Au-BiVO4 Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts[J]. ACS Appl Mater Interfaces, 2012,4(1):418-423. doi: 10.1021/am201481b

    15. [15]

      Huang W C, Lyu L M, Yang Y C. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity[J]. J Am Chem Soc, 2012,134(2):1261-1267. doi: 10.1021/ja209662v

    16. [16]

      An X, Li K, Tang J. Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2[J]. ChemSusChem, 2014,7(4):1086-1093. doi: 10.1002/cssc.201301194

    17. [17]

      Xiang Q, Cheng B, Yu J. Hierarchical porous CdS Nanosheet-Assembled Flowers with Enhanced Visible-Light Photocatalytic H2-Production Performance[J]. Appl Catal B, 2013,138(14):299-303.  

    18. [18]

      She X, Liang L, Ji H. Template-free Synthesis of 2D Porous Ultrathin Nonmetal-doped g-C3N4, Nanosheets with Highly Efficient Photocatalytic H2, Evolution from Water under Visible Light[J]. Appl Catal B, 2016,187(5):144-153.  

    19. [19]

      Zheng Y, Lin L, Ye X. Helical Graphitic Carbon Nitrides with Photocatalytic and Optical Activities[J]. Angew Chem, 2014,53(44)11926. doi: 10.1002/anie.201407319

    20. [20]

      Gao X C, Jiao X J, Zhang L C. Cosolvent-free Nanocasting Synthesis of Ordered Mesoporous g-C3N4 and Its Remarkable Photocatalytic Activity for Methyl Orange Degradation[J]. RSC Adv, 2015,5(94):76963-76972. doi: 10.1039/C5RA13438B

    21. [21]

      Sun J, Zhang J, Zhang M. Bioinspired Hollow Semiconductor Nanospheres as Photosynthetic Nanoparticles[J]. Nat Commun, 2012,3(4)1139.  

    22. [22]

      Ansari M B, Min B H, Mo Y H. CO2 Activation and Promotional Effect in the Oxidation of Cyclic Olefins over Mesoporous Carbon Nitrides[J]. Green Chem, 2011,13(3):1416-1421.  

    23. [23]

      Ansari M B, Jin H, Parvin M N. Mesoporous Carbon Nitride as a Metal-Free Base Catalyst in the Microwave Assisted Knoevenagel Condensation of Ethylcyanoacetate with Aromatic Aldehydes[J]. Catal Today, 2012,185(1):211-216. doi: 10.1016/j.cattod.2011.07.024

    24. [24]

      Chen X, Jun Y S, Takanabe K. Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride:A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light[J]. Chem Mater, 2009,21(18):4093-4095. doi: 10.1021/cm902130z

    25. [25]

      Zhang J, Guo F, Wang X. An Optimized and General Synthetic Strategy for Fabrication of Polymeric Carbon Nitride Nanoarchitectures[J]. Adv Funct Mater, 2013,23(23):3008-3014. doi: 10.1002/adfm.v23.23

    26. [26]

      Li X H, Zhang J, Chen X. Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement:Promotion of Crystallinity on Photocatalytic Conversion[J]. Chem Mater, 2011,23(19):4344-4348. doi: 10.1021/cm201688v

    27. [27]

      CHEN Yan, LIU Haibo. Construction and Photocatalytic Performance of Ultrathin Graphitic Carbon Nitride Nanosheets[J]. Chinese J Inorg Chem, 2017,33(12):2255-2261. doi: 10.11862/CJIC.2017.218

    28. [28]

      Liu Q, Chen T, Guo Y. Grafting Fe(Ⅲ) Species on Carbon Nanodots/Fe-doped g-C3N4, via Interfacial Charge Transfer Effect for Highly Improved Photocatalytic Performance[J]. Appl Catal B, 2017,205:173-181. doi: 10.1016/j.apcatb.2016.12.028

    29. [29]

      Cui Y, Ding Z, Fu X. Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis[J]. Angew Chem, 2012,124(47):11814-11818.  

    30. [30]

      Xu H, Yan J, She X. Graphene-Analogue Carbon Nitride:Novel Exfoliation Synthesis and Its Application in Photocatalysis and Photoelectrochemical Selective Detection of Trace Amount of Cu2+[J]. Nanoscale, 2014,6(3):1406-1415. doi: 10.1039/C3NR04759H

    31. [31]

      Chang Y, Liu Z, Fu Z. Preparation and Characterization of One-Dimensional Core-Shell Sepiolite/Polypyrrole Nanocomposites and Effect of Organic Modification on the Electrochemical Properties[J]. Ind Eng Chem Res, 2014,53(1):38-47.  

    32. [32]

      She X, Xu H, Xu Y. Exfoliated Graphene-Like Carbon Nitride in Organic Solvents:Enhanced Photocatalytic Activity and Highly Selective and Sensitive Sensor for the Detection of Trace Amounts of Cu2+[J]. J Mater Chem A, 2014,2(8):2563-2570. doi: 10.1039/c3ta13768f

    33. [33]

      Li J, Shen B, Hong Z. A Facile Approach to Synthesize Novel Oxygen-Doped g-C3N4 with Superior Visible-Light Photoreactivity[J]. Chem Commun, 2012,48(98):12017-12019. doi: 10.1039/c2cc35862j

    34. [34]

      Li H J, Sun B W, Sui L. Preparation of Water-Dispersible Porous g-C3N4 with Improved Photocatalytic Activity by Chemical Oxidation[J]. Phys Chem Chem Phys, 2015,17(5):3309-3315. doi: 10.1039/C4CP05020G

    35. [35]

      Yang S, Gong Y, Zhang J. ChemInform Abstract:Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution under Visible Light[J]. Adv Mater, 2013,25(17):2452-2456. doi: 10.1002/adma.v25.17

    36. [36]

      Zhang J, Zhang M, Zhang G. Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis[J]. ACS Catal, 2012,2(2):940-948.  

    37. [37]

      Onoe T, Iwamoto S, Inoue M. Synthesis and Activity of the Pt Catalyst Supported on CNT[J]. Catal Commun, 2007,8(4):701-706. doi: 10.1016/j.catcom.2006.08.018

    38. [38]

      Liu C, Huang H, Ye L. Intermediate-Mediated Strategy to Horn-like Hollow Mesoporous Ultrathin g-C3N4 Tube with Spatial Anisotropic Charge Separation for Superior Photocatalytic H2 Evolution[J]. Nano Energy, 2017,10(41):738-748.  

    39. [39]

      Sureshkumar, Manthiriyappan, Siswanto. Antibacterial and Biocompatible Surfaces Based on Dopamine Autooxidized Silver Nanoparticles[J]. J Polym Sci Part B:Polym Phys, 2013,51(4):303-310. doi: 10.1002/polb.23212

    40. [40]

      Hu H, Yu B, Ye Q. Modification of Carbon Nanotubes with a Nanothin Polydopamine Layer and Polydimethylamino-ethyl Methacrylate Brushes[J]. Carbon, 2010,48(8):2347-2353. doi: 10.1016/j.carbon.2010.03.014

    41. [41]

      Zhang J, Zhang M, Yang C. Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface[J]. Adv Mater, 2014,26(24):4121-4126. doi: 10.1002/adma.v26.24

    42. [42]

      Xie Y B. Photoelectrochemical Reactivity of a Hybrid Electrode Composed of Polyoxophosphotungstate Encapsulated in Titania Nanotubes[J]. Adv Funct Mater, 2010,16(14):1823-1831.  

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(16)
  • Abstract views(2122)
  • HTML views(656)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return