Citation: XIANG Bowen, WANG Lu, WANG Feng, WANG Jide. Catalytic Performance and Deactivation of Cu/HY Catalysts for Acetylene Hydrochlorination[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1449-1456. doi: 10.11944/j.issn.1000-0518.2018.12.180055 shu

Catalytic Performance and Deactivation of Cu/HY Catalysts for Acetylene Hydrochlorination

  • Corresponding author: WANG Lu, wanglu_4951@163.com
  • Received Date: 27 February 2018
    Revised Date: 23 April 2018
    Accepted Date: 6 June 2018

    Fund Project: the National Natural Science Foundation of China 21263025the National Natural Science Foundation of China U1403293the PhD Research Startup Foundation of Xinjiang University BS160222Supported by the National Natural Science Foundation of China(No.U1403293, No.21263025), the PhD Research Startup Foundation of Xinjiang University(No.BS160222)

Figures(8)

  • Zeolite supported Cu-based mercury-free catalysts(Cu/HY) were prepared by incipient-wetness impregnation, and their catalytic performance for acetylene hydrochlorination was evaluated in a fixed reactor.The structure parameters and theory properties of the fresh and used catalysts were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), inductively coupled plasma-atomic emission spectroscopy(ICP-AES), N2 adsorption and desorption isotherms(BET), thermogravimetry(TG), transmission electron microscopy(TEM), X-ray powder diffraction(XRD) and X-ray photoelectron spectroscopy(XPS).The acetylene conversion reached 84%, the selectivity for vinyl chloride was more than 95% and a better stability was observed on Cu/HY mercury-free catalysts with 15%(mass fraction) Cu loading, under the reaction conditions of 160℃, 101.325 kPa, a total gas hourly space of 120 h-1, V(HCl)/V(C2H2)=1.25.Besides, the characterization results show that the generation of carbon deposition, the reduction, agglomeration and loss of Cu active components are the main reasons for the decrease of the catalyst activity.
  • 加载中
    1. [1]

      Zhu M Y, Wang Q Q, Chen K. Development of a Heterogeneous Non-Mercury Catalyst for Acetylene Hydrochlorination[J]. ACS Catal, 2015,5(9):5306-5316. doi: 10.1021/acscatal.5b01178

    2. [2]

      Chao S L, Guan Q X, Li W. Study of the Active Site for Acetylene Hydrochlorination in AuCl3/C Catalysts[J]. J Catal, 2015,330:273-279. doi: 10.1016/j.jcat.2015.07.008

    3. [3]

      Zhou K, Jia J C, Li C H. Low Content Au-Based Catalyst for Hydrochlorination of C2H2 and Its Industrial Scale-Up for Future PVC Process[J]. Green Chem, 2014,17(1):356-364.

    4. [4]

      Zhao W L, Zhu M Y, Dai B. The Preparation of Cu-g-C3N4/AC Catalyst for Acetylene Hydrochlorination[J]. Catalysts, 2016,6(12):193-203. doi: 10.3390/catal6120193

    5. [5]

      Zhang J L, He Z H, Li W. Deactivation Mechanism of AuCl3 Catalyst in Acetylene Hydrochlorination Reaction:A DFT Study[J]. RSC Adv, 2012,2(11):4814-4821. doi: 10.1039/c2ra20222k

    6. [6]

      Song Q L, Wang S J, Shen B X. Palladium-Based Catalysts for the Hydrochlorination of Acetylene:Reasons for Deactivation and Its Regeneration[J]. Liq Fuels Technol, 2010,28(18):1825-1833.  

    7. [7]

      Pu Y F, Zhang J L, Li Y. Active Ruthenium Species in Acetylene Hydrochlorination[J]. Appl Catal, A, 2014,488:28-36. doi: 10.1016/j.apcata.2014.09.037

    8. [8]

      Mitchenko S A, Krasnyakova T V, Mitchenko R S. Acetylene Catalytic Hydrochlorination over Powder Catalyst Prepared by Pre-milling of K2PtCl4 Salt[J]. J Mol Catal A:Chem, 2007,275(1):101-108.  

    9. [9]

      Li H, Wang F M, Cai W F. Hydrochlorination of Acetylene Using Supported Phosphorus-doped Cu-based Catalysts[J]. Catal Sci Technol, 2015,5(12):5174-5184. doi: 10.1039/C5CY00751H

    10. [10]

      Hu D, Wang F, Wang J D. Bi/AC Modified with Phosphoric Acid as Catalyst in the Hydrochlorination of Acetylene[J]. RSC Adv, 2017,7(13):7567-7575. doi: 10.1039/C6RA26845E

    11. [11]

      GUO Yanyan, LIU Ying, HU Ruisheng. Preparation and Optimization of SnCl2-ZnCl2/C Mercury-free Catalyst for Acetylene Hydrochlorination[J]. Chinese J Appl Chem, 2014,31(5):624-626.  

    12. [12]

      Zhou K, Si J K, Jia J C. Reactivity Enhancement of N-CNTs in Green Catalysis of C2H2 Hydrochlorination by a Cu Catalyst[J]. RSC Adv, 2014,4(15):7766-7769. doi: 10.1039/C3RA46099A

    13. [13]

      Zhang J L, Liu N, Li W. Progress on Cleaner Production of Vinyl Chloride Monomers over Non-mercury Catalysts[J]. Front Chem Sci Eng, 2011,5(4):514-520. doi: 10.1007/s11705-011-1114-z

    14. [14]

      Wang L, Wang F, Wang J D. Hydrochlorination of Acetylene to Vinyl Chloride over Pd Supported on Zeolite Y[J]. React Kinet Mech Catal, 2013,110(1):187-194. doi: 10.1007/s11144-013-0580-3

    15. [15]

      Zhao J G, Zeng J J, Cheng X G. An Au-Cu Bimetal for Acetylene Hydrochlorination with Renewableb γ-Al2O3 as the Support[J]. RSC Adv, 2015,5(22):16727-16734. doi: 10.1039/C4RA13648A

    16. [16]

      Abudawood R H, Alotaibi F M, Garforth A A. Hydroisomerization of n-Heptane over Pt-Loaded USY Zeolites.Effect of Steaming, Dealumination, and the Resulting Structure on Catalytic Properties[J]. Ind Eng Chem Res, 2011,50(17):9918-9924. doi: 10.1021/ie200456w

    17. [17]

      Agudelo J L, Mezari B, Hensen E J M. On the Effect of EDTA Treatment on the Acidic Properties of USY Zeolite and Its Performance in Vacuum Gas Oil Hydrocracking[J]. Appl Catal, A, 2014,488(3):219-230.  

    18. [18]

      Song Z J, Liu G Y, He D W. Acetylene Hydrochlorination Over 13X Zeolite Catalyst at High Temperature[J]. Green Chem, 2016,18:5994-5998. doi: 10.1039/C6GC02291J

    19. [19]

      SONG Zhijia, LIU Shaofeng, HE Dawei. Performance of CuCl2/13X Catalyst in Acetylene Hydrochlorination[J]. Sci Sin Chim, 2018,48(2):186-295.  

    20. [20]

      WANG Lu.Preparation and Performance of Zeolite-supported on Supported Palladium Catalysts for Acetylene Hydrochlorination[D].Urumqi: Xinjiang University, 2013(in Chinese).

    21. [21]

      WANG Shengjie, SHEN Benxian, ZHAO Jigang. Deactivation of PdCl2/C Catalyst in Hydrochlorination of Acetylene[J]. Petrochem Technol, 2009,38(3):249-253. doi: 10.3321/j.issn:1000-8144.2009.03.005

    22. [22]

      Zhao J, Zhang T T, Di X X. Activated Carbon Supported Ternary Gold-Cesium(Ⅰ)-Indium(Ⅲ) Catalyst for the Hydrochlorination of Acetylene[J]. Catal Sci Technol, 2015,5(11):4973-4984. doi: 10.1039/C5CY00663E

    23. [23]

      Wang L, Wang F, Wang J D. Effect of K Promoter on the Stability of Pd/NFY Catalysts for Acetylene Hydrochlorination[J]. Catal Commun, 2016,83:9-13. doi: 10.1016/j.catcom.2016.04.020

    24. [24]

      Xu H, Zhou K, Si J K. A Ligand Coordination Approach for High Reaction Stability of an Au-Cu Bimetallic Carbon-based Catalyst in the Acetylene Hydrochlorination Process[J]. Catal Sci Technol, 2015,6(5):1357-1366.  

    25. [25]

      Biesinger M C, Lau L W M, Gerson A R. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides:Sc, Ti, V, Cu and Zn[J]. Appl Surf Sci, 2010,257(3):887-898. doi: 10.1016/j.apsusc.2010.07.086

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    13. [13]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(2)
  • Abstract views(516)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return