Citation: FAN Ye, HAN Yichen, XIA Yongmei, BO Chunling, WANG Shuyu, FANG Yun. Investigation on Self-assembly of Nanocontainers by Vesiculation of Conjugated Linoleic Acid and Sodium Alginate and Their Drug Delivery Behavior[J]. Chinese Journal of Applied Chemistry, ;2018, 35(12): 1478-1484. doi: 10.11944/j.issn.1000-0518.2018.12.180046 shu

Investigation on Self-assembly of Nanocontainers by Vesiculation of Conjugated Linoleic Acid and Sodium Alginate and Their Drug Delivery Behavior

  • Corresponding author: XIA Yongmei, ymxia@jiangnan.edu.cn
  • Received Date: 9 February 2018
    Revised Date: 26 March 2018
    Accepted Date: 4 June 2018

    Fund Project: Supported by the National Key Research and Development Program of China(No.2017YFB0308705), the National Natural Science Foundation of China(No.21606107, No.21276113), the National Students′ Platform for Innovation and Entrepreneurship Training Program of China(No.201710295006)the National Students′ Platform for Innovation and Entrepreneurship Training Program of China 201710295006the National Natural Science Foundation of China 21276113the National Natural Science Foundation of China 21606107the National Key Research and Development Program of China 2017YFB0308705

Figures(6)

  • Fatty acid vesicles(FAVs) are a kind of important nanocontainers, but they are inherently alkaline-adapted and the pH window for the FAV formation is very narrow, which hinders their application in drug delivery. In this work, the vesicular nanocontainers were fabricated by self-assembly of conjugated linoleic acid(CLA) and sodium alginate(SA) in neutral pH range, and the membrane stability of the FAVs was enhanced. Dynamic light scattering(DLS) and transmission electron microscopy(TEM) results indicated that the vesicular nanocontainers with vesicular diameter of 50~250 nm were self-assembled in neutral pH range when the mass fraction of SA was 25%~50%. Moreover, the size of the vesicular nanocontainers increased with the increase of mass fraction of SA at pH=7.4. Based on the chemical species of SA and CLA in neutral pH range, it was proposed that hydrogen bonding is the driving force to self-assemble them into the vesicular nanocontainers. In vitro drug release results showed that the vesicular nanocontainers had a higher encapsulation efficiency and better sustained release effect. The vesicular nanocontainers are expected to be promising carriers in drug delivery.
  • 加载中
    1. [1]

      Mura S, Nicolas J, Couvreur P. Stimuli-Responsive Nanocarriers for Drug Delivery[J]. Nat Mater, 2013,12:991-1003. doi: 10.1038/nmat3776

    2. [2]

      Yang J, Bahreman A, Daudey G. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes[J]. ACS Cent Sci, 2016,2:621-630. doi: 10.1021/acscentsci.6b00172

    3. [3]

      Gebicki J, Hicks M. Ufasomes are Stable Particles Surrounded by Unsaturated Fatty Acid Membranes[J]. Nature, 1973,243(5404):232-234. doi: 10.1038/243232a0

    4. [4]

      Zhang L, Eisenberg A. Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous Solutions[J]. J Am Chem Soc, 1996,118(13):3168-3181. doi: 10.1021/ja953709s

    5. [5]

      Sisinthy S P, Rao N K, Sarah C Y L. Design, Optimization and in Vitro Characterization of Self Nano Emulsifying Drug Delivery System of Olmesartan Medoxomil[J]. Int J Pharm, 2017,9:94-101.

    6. [6]

      Zhu T F, Adamala K, Zhang N. Photochemically Driven Redox Chemistry Induces Protocell Membrane Pearling and Division[J]. Proc Nat Acad Sci USA, 2012,109(25):9828-9832. doi: 10.1073/pnas.1203212109

    7. [7]

      Monnard P A, Deamer D W. Preparation of Vesicles from Nonphospholipid Amphiphiles[J]. Methods Enzymol, 2003,372:133-151. doi: 10.1016/S0076-6879(03)72008-4

    8. [8]

      Morigaki K, Walde P. Fatty Acid Vesicles[J]. Curr Opin Colloid Interface Sci, 2007,12(2):75-80. doi: 10.1016/j.cocis.2007.05.005

    9. [9]

      Namani T, Walde P. From Decanoate Micelles to Decanoic Acid/Dodecylbenzenesulfonate Vesicles[J]. Langmuir, 2005,21(14):6210-6219. doi: 10.1021/la047028z

    10. [10]

      LIANG Xiaodan, FAN Ye, FANG Yun. Investigation of Vesiculation of Conjugated Linoleic Acid Assisted by Monolauryl Phosphate[J]. Chem J Chinese Univ, 2017,38(9):1639-1644.  

    11. [11]

      Namani T, Deamer D W. Stability of Model Membranes in Extreme Environments[J]. Orig Life Evol Biosph, 2008,38(4):329-341. doi: 10.1007/s11084-008-9131-8

    12. [12]

      MA Jie, FAN Ye, FANG Yun. Influence of Alkyl Polyglucoside on Migration and Extension of pH Window for Forming Fatty Acid Vesicles of Conjugated Linoleic Acid[J]. Acta Phys-Chim Sin, 2015,31(7):1359-1364.  

    13. [13]

      Liu L, Siuda I, Richards M R. Structure and Stability of Carbohydrate-Lipid Interactions. Methylmannose Polysaccharide-Fatty Acid Complexes[J]. ChemBioChem, 2016,17(16):1571-1578. doi: 10.1002/cbic.201600123

    14. [14]

      Veverka M, Dubaj T, Jor k V. Stabilization of Conjugated Linoleic Acid via Complexation with Arabinogalactan and β-Glucan[J]. Eur J Lipid Sci Technol, 2017,119(8)1600258. doi: 10.1002/ejlt.v119.8

    15. [15]

      Tan H W, Misran M. Polysaccharide-Anchored Fatty Acid Liposome[J]. Int J Pharm, 2013,441(1):414-423.  

    16. [16]

      Fan Y, Fang Y, Ma L. The Self-Crosslinked Ufasome of Conjugated Linoleic Acid:Investigation of Morphology, Bilayer Membrane and Stability[J]. Colloid Surf B, 2014,123:8-14. doi: 10.1016/j.colsurfb.2014.08.028

    17. [17]

      Shen J, Bi J, Tian H. Preparation and Evaluation of a Self-Nanoemulsifying Drug Delivery System Loaded with Akebia Saponin D-Phospholipid Complex[J]. Int J Nanomed, 2016,11:4919-4929. doi: 10.2147/IJN

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    3. [3]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    4. [4]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    5. [5]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    6. [6]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    7. [7]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    8. [8]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    9. [9]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    12. [12]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    13. [13]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    14. [14]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    15. [15]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    16. [16]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(2)
  • Abstract views(1025)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return